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A B S T R A C T

In this study, an object-oriented, decision-level fusion method is proposed for tree species classification based on
spectral, textural, and structural features derived from multi-spectral and panchromatic imagery and Light
Detection And Ranging (LiDAR) data. Murphy's average method based on the Dempster Shafer theory (DST) was
used to calculate the combined mass function for decision making purposes. For individual feature groups, the
mass functions were calculated using the support vector machine (SVM) classification method. The species
examined included Norway maple, honey locust, Austrian pine, blue spruce, and white spruce. In addition to these
species, a two- or three-species compound class was included in the decision process based on the normalized
entropy in the presence of conflict that was itself determined according to whether individual groups of features
were consistent. The developed method provided a mechanism to identify tree crowns, which could not be
classified to one single species with a high confidence due to the conflict among feature groups. Data used in this
study were obtained for the Keele Campus of York University, Toronto, Ontario. Among the 223 test crowns, 204
crowns were assigned to one single species, and the overall classification accuracy was 0.89. A decision could not
be made for 19 crowns with confidence, and as a result, a two- or three-species compound class was assigned. The
classification accuracy was higher than that obtained using SVM classification based on individual and combined
spectral, structural, and textural features.
1. Introduction

Accurate identification of tree species is critically important for forest
inventory and sustainable management of forest biomass. In urban en-
vironments, accurate tree species classification is needed for maintaining
high biodiversity in urban forests that contributes, amongst other things,
to improving urban ecology, reducing air, water and noise pollution, and
helping to mitigate climate change (Iovan et al., 2008). Although tree
species classification using remotely sensed data could be traced back to
the beginning of remote sensing, it remains at this time an imprecise
science. This is mainly due to the complexity of forest canopies in terms
of their physical and biophysical properties, along with the on-going
limitations of remotely sensed data (Hu et al., 2008). Trees of the same
species may exhibit different properties between locations and some-
times within the same location. Moreover, trees of different species may
show similar properties in remotely sensed data, contributing to the
complexity of accurate species identification. This is likely true with
some features individually, such as spectral signatures, which are
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commonly used in remote sensing classification. However, this problem
may be minimized when several types of features are examined together.

Recent advances in remote sensing technologies have made a huge
amount of data from different sensors, such as high spatial resolution
imagery and high point density LiDAR (Light Detection and Ranging),
readily available. These high spatial resolution data allow researchers to
take advantage of the spatial and structural features of individual tree
crowns in tree species classification in addition to the commonly used
spectral signatures (Zhang and Hu, 2012; Alonzo et al., 2014; Li et al.,
2015). Furthermore, individual tree crowns can be considered as the
basic units with high spatial resolution data, which provide a flexible
platform to integrate information from different data sources. In addi-
tion, it is relatively easier to register data at the individual crown level
than at the individual pixel level. Furthermore, for individual tree crown
(object)-based classification, resampling all data sources to the same
spatial resolution may not be required.

The use of multi-source remotely sensed data also challenges re-
searchers to develop effective methods to utilize fully all available
sri.ca (G.B. Hall).
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information of individual tree crowns in species classification. Data ob-
tained from different sensors with the same properties can be redundant
if they cover the same area. However, they can also be complementary if
the sensors measure different physical properties of individual tree
canopies. In addition, information provided by individual data sources is
often imprecise and uncertain. Hence, the fusion of redundant and
complementary data may provide a complete description of a given
crown while reducing imprecision and uncertainty. Although studies
have shown the potential to combine features from multi-source
remotely sensed data in improving tree species classification (for
example, Fassnacht et al., 2016), further investigation is required to
achieve a full understanding of the discriminant powers of individual
datasets and to seek an efficient and effective way to combine informa-
tion from different sources.

The fusion of data from different sensors for classification usually
occurs at either the feature or the decision level (Fassnacht et al., 2016).
For feature-level fusion, features derived from individual sensors are
consolidated into a single feature set. Machine-learning methods, such as
support vector machine (SVM) (Cortes and Vapnick, 1995) and random
forest (Ho, 1995), are commonly used to classify the species of interest
based on the combined feature set. The SVM and random forest methods
are generally shown to be more robust for classification with a large
number of features in comparison with traditional parametric methods,
such as maximum likelihood classification (Maxwell et al., 2018).
However, the high dimensionality in the feature space that results from
feature-level fusion is likely to be a concern for applications where the
size of training samples is small (Maxwell et al., 2018). In addition,
features derived from different data sources are usually treated equally
by the SVM and random forest methods, even though some of the data
sources may be more reliable than others. On the contrary, each data
source is analyzed separately at the decision-level fusion, and the un-
certainty and imprecision associated with each data source can be
measured and considered in the fusion process. In this study, we focus on
decision-level fusion.

Several methods have been developed for decision-level fusion in
remote sensing classification. For example, Mora et al. (2011, 2012)
employed Dempster Shafer theory (DST) (Dempster, 1968; Shafer, 1976)
for species classification using satellite imagery, topographic informa-
tion, and fire disturbance history records, and the mass function corre-
sponding to each data source was determined by a Fuzzy Statistical
Expectation Maximization (FSEM) method (Germain et al., 2002) or an
empirical statistics analysis. Mora et al. (2011, 2012) also assumed a
multivariate normal distribution, which might not always be true with
features derived from remotely sensed data. Stavrakoudis et al. (2014)
and, more recently, Aval et al. (2019) carried out a SVM classification to
acquire the posterior-probability that a given target belonged to a certain
tree species, and the final decision was made based on the weighted
average of the probabilities from individual sources. With these methods
(Stavrakoudis et al., 2014; Aval et al., 2019), the same species classes
were used for all data sources and all targets (either individual pixels or
crowns), and the posterior probabilities were calculated using the
method proposed by Platt (1999) for binary classes and extended by Wu
et al. (2004) for multiple classes. Bigdeli et al. (2014) used the SVM
method for classification based on individual data sources, and a Naïve
Bayes classifier was proposed to combine the classification results ob-
tained based on individual data sources using the SVM method.

Although satisfactory results are reported in these studies, further
research and in-depth analysis are warranted. One specific issue that
needs to be addressed is classification uncertainty. For example, in the
research noted above, a one-species class is ultimately assigned to a given
sample based on a pre-determined criterion, such as a maximum prob-
ability or mass function, even though its value may not be significantly
different between two different species, which makes the classification
method not robust, especially in the presence of noise. Furthermore,
based on different data sources, classification results may be different,
due to conflict among data sources. Conflicting information presented by
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different data sources is not explicitly addressed in the existing methods.
Based on DST, many methods have been developed to measure the
conflicts among bodies of evidence and to deal with conflicting infor-
mation (Zadeh, 1986; Yong et al., 2004). However, these methods are all
statistics-based, and the generated results might not be intuitive in some
cases. A detailed example is presented in the discussion section of this
paper as an illustration. In the context of species classification or in the
broader context of classifications using multi-source remotely sensed
data, there is no generally accepted in-depth analysis to the best of our
knowledge of the nature of conflicts or an effectivemethod that should be
used to measure and deal with conflicts.

To address the abovementioned issues related to classification un-
certainty and conflicting information, this study exploits fully the
discriminant power of two available data sources in individual tree
species classification based on SVM classification and DST. Conflicts
associated with different bodies of evidence are analyzed in detail and
explicitly addressed. A framework is developed to classify a given crown
into a two- or three-species compound. The developed method is vali-
dated using data obtained from high spatial resolution and multi-spectral
imagery and LiDAR (Light Detection and Ranging) data over a study area
in the city of Toronto, Ontario, Canada.

2. Study area and data pre-processing

The study area is located on the Keele campus of York University,
Toronto, Canada (centered at 43.7735� N, 79.5019� W), as shown in
Fig. 1. A number of trees grow along roads and in woodlots in the 457
acres of land. Campus Services and Business Operations (CSBO) at York
University carried out tree inventory on the campus in June 2015. The
location, species, diameter at breast height (DBH) and height were
recorded for each tree. Although the tree inventory has not been updated
recently, the acquired time frame matches that of the remotely sensed
data used. In addition, the York University Map Library provided 8-cen-
termeter resolution aerial image obtained in 2016 for study area (Fig. 1).
This was used as a visual reference image to identify trees and double
check the selected reference samples.

Five common species were selected for this study: Norway maple
(Acer platanoides), honey locust (Gleditsia triacanthos), Austrian pine
(Casuarina equisetifolia), blue spruce (Picea pungens), and white spruce
(Picea glauca). A total of 751 trees were randomly selected. These trees
were located along streets and near buildings and other high-pedestrian
areas, thereby representing the typical distribution of trees in an urban
area. The sampled trees included 188 Norway maples, 180 honey locusts,
159 Austrian pines, 115 blue spruces, and 109 white spruces. Of the 751
tree samples, 528 (around 70%) were used randomly for training and the
remainder (223 trees) for testing. The characteristics of individual tree
crowns commonly used by photo interpreters for the species of interest
were compiled, and they could be potentially represented by spectral,
textural, and structural features derived from the remotely sensed data. A
summary is shown in Table 1.

Remotely sensed data available for this study included Worldview-2
(WV-2) imagery obtained on July 21, 2016, and airborne LiDAR data
acquired in April 2015. The WV-2 imagery included one panchromatic
band with a spatial resolution of 0.4 m by 0.4 m and eight multi-spectral
bands with a spatial resolution of 1.6 m by 1.6 m. The WV-2 imagery was
converted to surface reflectance by removing the atmospheric effect by
using the Atmospheric & Topographic Correction (ATCOR) model in PCI
Geomatics software (PCI Geomatics, Canada). The false color composite
of the WV-2 imagery is shown in Fig. 2. The LiDAR data were collected
using a Leica ALS 70 LiDAR instrument at a flying height of 1300 m with
a Pulse Rate Frequency of 400 kHz, generating a point density of 10
points per square meter (Airborne Imaging Inc, Canada). The horizontal
and vertical accuracies of the collected LiDAR data were 30 cm and 10
cm, respectively. A digital elevation model (DEM) and digital surface
model (DSM) with the same spatial resolution as the WV-2 panchromatic
band were generated from the LiDAR data cloud using Esri's ArcGIS



Fig. 1. The location indicated by the red dot (left) and an aerial photo (right) of the study area. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Table 1
Characteristics of tree crowns of the species of interest used in photo interpre-
tation and potential remote sensing features.

Species Leaf and its color Crown texture Crown size and
shape

Norway
maple

Simple leaf and dark
green

Densely limbed,
broad, rounded
crown with sparse,
dark holes

Growing to 20–30 m
tall with a trunk up
to 1.5 m in diameter,
round or oval shaped

Honey
locust

Compound leaf and
bright green

Broad, flat-topped
crown fuzzy/airy

Oval or round,
spreading shaped
with angular
branches

Austrian
pine

Simple needle-like
parallel leaf and dark
green

Coarse, patchy,
prominent

Tall columnar
shaped

Blue
spruce

Stiff and sharp needle
attached individually
and evenly to
branches, and blue-
green in color

Sharp or dense Pyramidal or conical
shaped, typically
grows to 12–18 m in
height and 30–60 cm
in trunk diameter

White
spruce

Short, stiff, needles,
and bluish green or
green in color, with a
whitish powdery,
waxy layer

Very dense and
symmetrical

In open grows
conical, spire-like
crown, with a
rounded top; In
dense stands,
branches are self-
pruning, coarser
branching

Remote
sensing
features

Spectral from multi-
spectral imagery

Statistical textural
features from very
high spatial
resolution imagery

Canopy height and
vertical profile
features from LiDAR
data

Fig. 2. The false color composite of the WV-2 imagery of the study area with the
near-infrared band printed as red, red as green, and green as blue.(For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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software. Corresponding to the DSM, the LiDAR in the intensity image
was also generated. A canopy height model (CHM) was then derived as
the difference between the DSM and DEM. The WV-2 imagery and LiDAR
CHM were co-registered using the ortho-rectification method in ENVI
software (Exelis Visual Information Solutions) via the LiDAR DSM and
intensity image based on 400 manually selected tie points. These tie
points were located at various elevations (on the ground or on buildings)
and were evenly distributed across the study area. The resulting co-
registration accuracy was 0.57 pixels. The LiDAR CHM is shown in Fig. 3.
3

3. Method

Classification was performed on individual tree crowns, which were
first delineated. Features were then derived from each crown for classi-
fication. Because the current study focused on the development of clas-
sification methods, the training and test crowns were manually
delineated by visual interpretation based on aerial photos and informa-
tion presented by bothWV-2 imagery and LiDAR data. As shown in Fig. 4,
spectral, textural, and structural features were extracted from WV-2
multi-spectral bands, WV-2 panchromatic band, and LiDAR data. SVM
classification was then used to calculate the posterior probabilities of a
given sample belonging to these five species based on individual feature
groups. Decision fusion was finally carried out to classify a given tree
crown to either one of the five species or a two-species or a three-species
compound class. Details of the feature extraction, SVM classification, and
decision fusion are described in the following subsections. Accuracy



Fig. 3. The CHM derived from the airborne LiDAR data over the study area.
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assessment is described as well.
3.1. Feature extraction

Based on the characteristics of individual tree crowns shown in
Table 1, three categories of features were derived for species classifica-
tion, including spectral features from theWV-2multi-spectral bands (16),
textural features from the WV-2 panchromatic band (11), and structural
features from the LiDAR CHM and 3D data cloud (16). These features
were calculated for each crown. As an example, Fig. 5 shows an indi-
vidual tree crown exhibited from left to right in multi-spectral,
panchromatic imagery of WV-2 and LiDAR CHM.

For the spectral features, the mean and standard deviations of the
reflectance in the eight WV-2 multi-spectral bands were derived since
trees with different species tend to have different spectral signatures.

As shown in Table 1, the tree crowns of the five species studied have
different structures in leaf and branch distribution, which may be
exhibited by high spatial resolution imagery as horizontal spatial pat-
terns. In this study, the Gray Level Co-occurrence Matrix (GLCM) (Har-
alick et al., 1973) statistics were calculated based on the WV-2
panchromatic band (with a spatial resolution of 0.6 m by 0.6 m). For
each tree crown, a GLCM was obtained with the displacement of 1 pixel,
and all directions considered. In addition to the measures presented in
Haralick et al. (1973), two cluster parameters, namely cluster shade and
cluster prominence (Conners et al., 1984), were also considered to ac-
count for the perceptual concepts of uniformity and proximity. Eleven
measures were selected and are summarized in Table 2. It is worth
mentioning that a GLCM was calculated for individual crown segments.
Due to the sizes of the crowns being different, the number of pairs of
pixels that were considered to calculate the GLCM might be different. In
this study, the displacement of 1 pixel was selected to ensure that there
were sufficient numbers of pairs for the calculation even for small
crowns. In addition, the displacement of more than 1 pixel was used to
assess (a) if a value of other than 1 pixel for the displacement performed
better in terms of the separation among species, and (b) if it was neces-
sary to use measures from GLCMs calculated based on different dis-
placements. The experimental results supported the use of the
displacement of 1 pixel.

To characterize the vertical profiles and general structures of indi-
vidual tree crowns, LiDAR CHM was first used to derive the general
structural features, such as the mean and standard deviation in the height
of a tree crown and the ratio of the maximum height to the projected area
of the crown.

The fraction and distribution of tree elements, such as leaves and
4

branches, within a tree crown or within-crown gaps tended to be
different for different species (Li et al., 2013). There were four returns
recorded for the LiDAR data used. Within tree canopies, the majorities of
the returns were the first and the second. As a result, the proportions of
the first two returns over the total returns within individual tree crowns
subtracted from 1 were employed as two measures for with-crown gap
fractions (1-proportions). The vertical profile of LiDAR points within a
tree crown was used to reveal the distributions of the tree elements. A
summary of the LiDAR features used is provided in Table 3.

The abovementioned features were selected from many candidates
that have been reported in the literature to describe spectral, textural,
and structural features from remotely sensed data based on prior
knowledge. Analysis was also carried out to ensure that the features used
were not highly correlated. Several feature selection methods are being
applied in a separate study (Li, 2021) and the features used here were
consistent with its result. These features were derived for individual
crowns and their values were normalized between 0 and 1.

3.2. SVM classification

In this study, four SVM classifications were carried out. For the pro-
posed method, an SVM classifier was first trained on each of the spectral,
structural, and textural features. For comparison purposes, the fourth
SVM was trained using the combined features used in the first three
classifiers.

The SVM was implemented in MATLAB (version R2020a). A hard
SVM was chosen over a soft SVM, since it was not trivial to seek the
optimal value of the cost for a soft SVM and the value was not always the
same for classifications using different features. The SVM was originally
introduced as a binary classifier (Cortes and Vapnik, 1995), and to apply
the SVM to multi-classes, the one vs. one strategy was used. For any pair
of classes, the discriminant function was determined by Equation (1) as

y¼
Xm
i¼1

αiyiK
�
x!T

i x!
�
þ b; K

�
x!T

i x!
�
¼ � γe� x!� x!2

i ; (1)

wherem is the number of support vectors; x!i and yi are the feature vector
and label of support vector i; K is the kernel function; and α and b are the
parameters determined through the training process. The Gaussian radial
basis function (RBF) was used as the kernel and its format is provided as
well. For the RBF kernel, there is one parameter, γ; which defines the
extent of the influence of a single training example can reach. In this
study, it was set as the inverse of the number of training samples.

A large absolute value in y (greater than 1) represents a confident
prediction, and a value of 0 for y means that the unknown vector is on the
hyperplane that separated the two classes, leading to maximum predic-
tion uncertainty. The posterior probabilities that a given sample
belonged to these two classes were obtained by implementing modified
Platt Scaling (Platt, 1999) used by Lin et al. (2007). As noted earlier, five
species classes were used in this study, and as a result ten binary SVM
classifiers were built. The posterior probabilities of a given sample
belonging to these five species were calculated (Wu et al., 2004) and
employed as the mass functions for the decision-level fusion based on
DST.

3.3. Decision fusion

For the decision-level fusion, Murphy's average approach (Murphy,
2000) was used instead of the more commonly used Dempster's rule of
combination (Shafer, 1976). The justification for its use is described later
in this subsection. Murphy's average approach is built on Dempster's rule
of combination, which is shown in Equation (2),

mðAÞ¼
P

B1\…\Bn¼Am1ðB1Þ…mnðBnÞ
1� K

; K ¼
X

B1\…\Bn¼∅

Yn
i¼1

miðBiÞ; (2)



Fig. 4. The workflow of the developed method.
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where mðAÞ is the mass function of a proposition A after considering n
pieces of evidence; miðBiÞ is the mass function in the proposition Bi

supported by the ith piece of evidence; and K is known as the total
conflict factor.

Based on Dempster's rule of combination, the mass function for
proposition A can be interpreted as the accumulated evidence supporting
this proposition normalized by that supporting all non-null propositions.
As the data become more contradictory (pieces of evidence strongly
support contradictory propositions), K approaches 1, and a combination
of the data is less logical. As a result, Dempster's rule of combination is
not effective in situations where evidence or information sources are
conflicting and may generate counterintuitive results (Zadeh, 1986).
With Murphy's average approach, the mass functions corresponding to all
evidence are first averaged, and Dempster's rule of combination is then
5

applied to the average to get the combined mass function. To demon-
strate the difference between these two combination methods and to
understand better the rationale behind the proposed method, three cases
are shown in Tables 4–6 as examples. They corresponded to three sce-
narios: (1) there were no conflicts among the three types of features (that
is, the same result was obtained from the SVM classification based on the
three features individually); (2) two types of features were highly con-
flicting; and (3) three different species classes were supported by the
three types of features.

For the first case (Table 4), the species with the maximum support
from the spectral, structural, and textural features was the same. Thus,
there was no conflict among the feature groups. In this case, both com-
bination rules provided similar results. For the other two cases with
conflicts among feature groups, the results from Murphy's average



Fig. 5. An individual tree crown on the false color image of the WV-2 multi-spectral bands (left), WV-2 panchromatic band (middle), and LDAR-derived CHM (right).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Textural features utilized in this study.

Features Formula

Entropy � P
i

P
j
½pði; jÞlogpði; jÞ� ¼ Hxy

Information measures of
correlation 1

Hxy � Hxy1

MaxfHx � Hyg Hxy1 ¼ �P
i

P
j
½pði; jÞlogðpxðiÞpyðjÞÞ�

Hx ¼ �P
i
½pxðiÞlogpxðiÞ� Hy ¼ � P

j
½pyðjÞlogpyðjÞ�

Information measures of
correlation 2 ð1� exp½�2ðHxy2 � HxyÞ�Þ

1
2 Hxy2 ¼

P
i

P
j
½pxðiÞpyðjÞlogðpxðiÞpyðjÞÞ�

Difference entropy
� P

k
½px�yðkÞlog px�yðkÞ�, px�yðkÞ ¼

X
i

X
j

pði; jÞ

ji� jj ¼ k
Correlation

P
i
P

j½ðijÞ*pði; jÞ� � μxμy
σxσy

Sum variance P2N
i¼2

ði� f Þ2pxþyðiÞ; �
P2N
i¼2

pxþyðiÞlogfpxþyðiÞg ¼ f

Cluster shade P
i

P
j
½ðiþ j� μx � μyÞ3 *pði; jÞ�

Cluster prominence P
i

P
j
½ðiþ j� μx � μyÞ4 *pði; jÞ�

Maximum probability MAXfpði; jÞg
Inverse difference P

i

P
j

pði; jÞ
1þ ji� jj

Inverse difference
momentum

P
i

P
j

pði; jÞ
1þ ði� jÞ2

pði; jÞ is the (i;j) entry in a normalized GLCM; pxðiÞ is the ith entry of the marginal
probability matrix obtained by summing the rows of the matrix p; pyðjÞ is the jth
entry of the marginal probability matrix obtained by summing the columns of the
matrix p; and μx ;μy ;σx, and σy are the mean and standard deviations of the matrix
of px and py .

Table 3
Structural features derived from LiDAR point cloud and CHM.

Type Description Number of
metrics

General
structure

Mean and standard deviation of heights within a
crown and the ratio of the maximum height to the
projected area

3

Gap fraction Fractions of first and second returns within
individual tree crowns

2

Vertical
profile

Proportion of LiDAR points per horizontal layer to
total number of points within individual tree
crown, considering 10 equal thickness layers along
the vertical profile. The first five were used.

5

Table 4
The decision fusion results using Dempster's combination rule and Murphy's
average method: Case A. The Norway maple, honey locust, Austrian pine, blue
spruce, and white spruce are denoted as MN, LH, PA, SB, and SW, respectively.

Evidence (features) Mass function

MN LH PA SB SW

Spectral 0.787 0.116 0.010 0.015 0.072
Structural 0.967 0.024 0.009 0.000 0.000
Textural 0.946 0.005 0.021 0.011 0.017
Dempster's rule 1.000 0.000 0.000 0.000 0.000
Murphy's method 1.000 0.000 0.000 0.000 0.000

Table 5
The decision fusion results using Dempster's combination rule and Murphy's
average method: Case B. The Norway maple, honey locust, Austrian pine, blue
spruce, and white spruce are denoted as MN, LH, PA, SB, and SW, respectively.

Evidence (features) Mass function

MN LH PA SB SW

Spectral 0.021 0.964 0.001 0.006 0.008
Structural 0.000 0.005 0.946 0.024 0.024
Textural 0.004 0.449 0.539 0.001 0.007
Dempster's rule 0.000 0.803 0.196 0.000 0.001
Murphy's method 0.000 0.465 0.535 0.000 0.000

Table 6
The decision fusion results using Dempster's combination rule and Murphy's
average method: Case C. The Norway maple, honey locust, Austrian pine, blue
spruce, and white spruce are denoted as MN, LH, PA, SB, and SW, respectively.

Evidence (features) Mass function

MN LH PA SB SW

Spectral 0.006 0.234 0.055 0.151 0.554
Structural 0.000 0.816 0.002 0.094 0.087
Textural 0.000 0.001 0.000 0.609 0.390
Dempster's rule 0.000 0.006 0.000 0.310 0.684
Murphy's method 0.000 0.403 0.000 0.215 0.381
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method were more reasonable. Specifically, as shown in the second
scenario (Table 5), according to the SVM classification based on spectral
and structural features, the tree crown of interest belonged to honey
6

locusts and Austrian pines, respectively, both with a very high degree of
belief (0.964 and 0.946, respectively). A decision could hardly be made
based on these two pieces of conflicting evidence. For the third piece of
evidence (textural feature, Table 5), the mass function from the SVM
classification was also close between honey locusts and Austrian pines
(0.449 and 0.539, respectively). From these results, it would be reason-
able to conclude that this tree crown might belong to Austrian pines, but
the uncertainty in this decision would be high. The result based on
Murphy's average method was consistent with our intuition, while based
on Dempster's rule, there was strong evidence that this tree crown



Table 8
The discriminant function (y-value) from the binary SVM classifier based on
spectral, structural, and textural features for Case C (Table 6). In each binary SVM
listed, the first species class is the positive class and the second the negative class.

Evidence (features) y_value (binary SVM)

LH vs. SB LH vs. SW SB vs. SW

Spectral 0.619 �0.579 �0.929
Structural 1.471 1.192 0.398
Textural �4.128 �4.710 0.312
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belonged to honey locust (with a belief of 0.803).
To understand further the nature of the classification results based on

these three groups of features, the SVM binary classification between
honey locusts and Austrian pines was checked. As shown in Table 7, for
the binary classification between honey locusts (positive class) and
Austrian pines (negative class), the discriminant function in Equation (1)
had the values of 3:942; �3:925; and �0:019 based on spectral, struc-
tural, and textural features, respectively. The SVM classifier based on the
spectral and structural features categorized this crown as honey locusts
and Austrian pines, respectively, with high confidence (with the y value
much higher than 1 or -1). However, the y value was close to 0 for the
SVM classifier based on textural features, and thus the classification
uncertainty was very high. For this case, a reasonable decision would be
to assign this crown to a compound class of honey locust and Austrian
pine.

For the case shown in Table 6, the spectral, structural, and textural
features supported different species classes (white spruce, honey locust,
and blue spruce, respectively). According to Dempster's combination
rule, there was relatively strong combined evidence to support the
proposition that this crown belonged to a white spruce (0.608). However,
based on Murphy's average method, there was a similar level of weak
support for the proposition that this crown belonged to either honey
locust (0.403) or white spruce (0.381), which was supported by the re-
sults from the three binary SVM classifications involved for the three
possible species classes (Table 8).

Between the honey locust and the blue spruce, this crown belonged to
both species with a high confidence (the absolute discriminant function
greater than 1) based on structural and textural features, respectively.
Between the honey locust and the white spruce, the absolute discrimi-
nant function had a value greater than 1 based on the structural and
textural features, meaning there was strong evidence to support a deci-
sion for honey locust and white spruce. Between the blue spruce and the
white spruce, the absolute discriminant function had a value smaller than
1, which could be interpreted as two votes of weak support for the white
spruce and one vote of stronger support for the blue spruce. Hence, based
on the spectral, structural, and textural features, a decision on any single
species among the honey locust, blue spruce, or white spruce could not be
made with high confidence. As a result, a three-species compound class
would be a suitable choice.

Based on the results presented in the examples shown in Tables 4–6,
Murphy's method was used for this study. These examples also indicated
that compound classes might need to be introduced due to relative spe-
cies uncertainty. In the existing classification methods based on DST, the
decision is often made based on the maximum pignistic probability
(Smets, 2000), and uncertainty in the decision is characterized by the
range between belief and plausibility. For the case in this study with only
single propositions (singletons), the decision based on pignistic proba-
bilities is the same as that based on mass functions, and an uncertain
range is not defined. Hence, we used the following logic in the decision
making process considering the abovementioned three cases.

For each feature group, assign the species to the one with the
maximummass function. In the first case (as in Table 4), the results were
consistent among the three feature groups. The species with the
maximum combined mass function calculated using Murphy's average
method was assigned to this crown, and the normalized entropy
(normalized over the maximum entropy) was calculated over the mass
functions of the five species. The normalized entropy served as an un-
certainty measure (Pittman et al., 2021). For the second case (as in
Table 7
The discriminant function (y-value) from the binary SVM classifier between the
honey locust (positive class) and Austrian pine (negative class) based on spectral,
structural, and textural features for Case B (Table 5).

Evidence (features) Spectral Structural Textural

y_value 3.942 �3.925 �0.019
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Table 5), the classification result for one feature group was different from
the other two. This crown could be either honey locus or Austrian pine.
The normalized entropy was then calculated based on the mass functions
of the two species. If the entropy was high (above 0.95), the compound
proposition consisting of these two species was assigned to the crown of
interest. Otherwise, the species with the highest combined mass function
was assigned as in the first case. For the third case (as in Table 6), each
feature group supported one different species based on the maximum
mass function. This crown could be either white spruce, honey locust, or
blue spruce, and as a result, the normalized entropy was calculated based
on the mass functions associated with these three species. If the entropy
was high (above 0.95), the compound proposition consisting of these
three classes was assigned, and otherwise, the species with the highest
combined mass function was chosen as in the first two cases.

The use of entropy as an uncertainty measure for classification
problems is not new (e.g., Pittman et al., 2021). However, it has been
commonly calculated over all species of interest, and hence did not
measure the uncertainty between two or three species where uncertainty
occurred. As a demonstration, from the analysis for the case listed in
Table 5, a decision could not be made between the honey locust and
Austrian pine. If the entropy was calculated based on the mass functions
of the five species, the normalized value was 0.47 according to Murphy's
average method, which was not high. If the entropy was calculated based
on only the honey locust and the Austrian pine, the normalized value was
0.99, which was very high. Similarly, for the case shown in Table 6, the
normalized entropy values for the five and three species were 0.66 and
0.97, respectively. Based on the normalized entropy approach proposed
in this study, the tree crown in Table 5 was assigned as a compound of
honey locust and Austrian pine and the one in Table 6 as a compound of
honey locust, blue spruce, and white spruce.

It is worth mentioning that the threshold of 0.95 in the normalized
entropy was chosen by considering the discriminant functions (y�
values) of the SVM classification for various cases. For the third case,
there were many scenarios of conflict and uncertainty. It was difficult to
establish the criteria to determine whether a compound class was
appropriate based on the discriminant functions. The situation gets worse
for classifications using a large number of feature groups. As a trade-off
between algorithm complexity and physical significance, the normal-
ized entropy was used, and its calculation was adapted to these three
cases.

3.4. Accuracy assessment

To evaluate the proposed method, the test samples were classified.
The numbers of test crowns that were classified into one species and two-
species or three-species compound were tallied. For the crowns classified
into one species, the confusion matrix was calculated. The user's accu-
racy, producer's accuracy, overall accuracy, and kappa coefficient were
calculated. For comparison with the fusion method at the feature level,
one single species was also assigned to each of the tests, based on the
maximum mass function based on the maximum mass function and the
confusion matrix and corresponding accuracies were calculated. The
overall accuracy was also calculated for the SVM classification using the
spectral, structural, and textual features individually and combined.
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4. Results and analysis

The spectral features (mean and standard deviation) for a sample tree
crown are shown in Fig. 6. There were some differences in the mean
reflectance among the five species, but as expected, the difference might
not be sufficient to be used alone to discriminate between these species. It
is also noted that the difference in the standard deviation in the reflec-
tance for the whole crown was relatively larger compared with that for
the mean reflectance. This indicates that the difference in the vertical and
horizontal structures of tree crowns might be revealed in the standard
deviation. Most of the textural measures examined in this study are
commonly used, but cluster prominence and cluster shade are rarely
employed. These two features, shown in Fig. 7, were able to show the
characteristics of gaps and shadows within crowns, which tended to be
different among the five species. Although the horizontal and vertical
structures of tree crowns were evident in the spectral and textural fea-
tures, they were characterized in detail with the features derived from
LiDAR data. Fig. 8 shows the gap fractions derived from the LiDAR data
for a tree crown.

The classification results based on the 223 test tree crowns are shown
in Tables 9–12. With these results, conflict was determined based on
whether the decisions made were consistent across individual groups of
features. For three groups of features, one, two, or three species could be
supported based on the maximum posterior probabilities generated from
the SVM classifiers. As shown in Table 9, among the 223 test samples,
Fig. 6. The mean (top panel) and standard deviation (bottom panel) of the reflectan
of interest.
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there were 105 crowns where all feature groups supported the same
species (labeled as “all agree”); 101 crowns (96% of them) were assigned
correctly to one single species, and only four crowns were misclassified.
Even for the misclassified crowns, the species being assigned had strong
combined support according to these features. For these crowns, addi-
tional information was required. For example, temporal features could be
used to separate deciduous and coniferous species. Most of the Norway
maple crowns fell into this category. For the case where two types of
features supported one species and the third was not (labeled as “Two
agree”), there were 98 tree crowns. Of these, 82 crowns were assigned to
one single species with 85% (70 crowns) correct, and 16 crowns were
determined as uncertain between two species and classified as a two-
species compound class.

For the case where each type of feature supported different species
based on the SVM classification (labeled as “all disagree”), there were 21
tree crowns. Of these, 17 were assigned to one single species with 65% of
them (11 crowns) correct, and three tree crowns were identified as a
compound class. An expected decrease in the overall accuracy in the
presence of conflicts is apparent. Honey locust, blue spruce, and white
spruce appeared more in the compound classes. The uncertainty between
the blue spruce and white spruce is logical because they belong to the
same genus.

Table 10 shows the confusion matrix of the classification results for
the 204 total test crowns assigned to one single species. The overall ac-
curacy was 0.89. The user's accuracy was high for all species, but the
ce in the eight WV-2 multi-spectral bands for individual tree crowns of species



Fig. 7. The cluster prominence and cluster shade of an example tree crown for each species (the same crowns as those in Fig. 6) based on the WV-2 panchro-
matic band.

Fig. 8. The cluster prominence and cluster shade of an example tree crown for each species (the same crowns as those in Fig. 6) based on the WV-2 panchro-
matic band.
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producer's accuracy for white spruce was low (0.55). Most of the
misclassification occurred between blue spruce and white spruce.

In comparison, the confusion matrix for all test tree crowns, without
excluding uncertain tree crowns based on the entropy measure, is shown
in Table 11. The decrease in the overall accuracy when including all test
crowns indicated that most uncertain tree crowns (compound) were very
Table 9
The numbers of crowns that fell into each category and the classification status.

Categories Number of
crowns

Classified as single
species

Classified as a compound
class

Total
crowns

Correctly
classified

Total
crowns

Correctly
classifieda

All agree 105 105 101 0 –

Two agree 98 82 70 16 12
All
disagree

20 17 11 3 3

Total 223 204 182 19 15

a Meaning the species as the ground truth was included in the compound class.
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likely misclassified if the species with the maximum combined mass
function was assigned. As analyzed in the previous section, for these tree
crowns, the difference in the combined mass function between two or
three species was small, and assignment to a species led to high
uncertainty.

The overall accuracies are shown in Table 12 to compare the classi-
fication results under different schemes. To produce Table 12, all test tree
crowns were assigned to the species with the maximum posterior prob-
ability (for the SVM classifiers) and combined mass function (for
decision-level fusion). As expected, the classification accuracies were
higher by combining features together either at the feature level or at the
decision level. Among the feature groups used, the classification accuracy
was the highest for the structural features. The accuracy based on Mur-
phy's average method at the decision level was slightly higher than that
from feature-level fusion.

5. Discussion

The overall classification results obtained in this study (Table 12) are



Table 10
The confusion matrix for the crowns assigned to a single species. The Norway maple, honey locust, Austrian pine, blue spruce, and white spruce are denoted as MN, LH,
PA, SB, and SW, respectively.

Ground truth Total User's accuracy

MN LH PA SB SW

Classification MN 54 2 0 0 0 56 0.96
LH 1 47 2 3 2 55 0.85
PA 0 0 44 1 2 47 0.94
SB 0 0 0 25 6 31 0.81
SW 0 1 0 2 12 15 0.80
Total 55 50 46 31 22 Overall accuracy: 0.89

Kappa coefficient: 0.86Producer's accuracy 0.98 0.94 0.96 0.81 0.55

Table 11
The confusion matrix for all test tree crowns. The Norway maple, honey locust, Austrian pine, blue spruce, and white spruce are denoted as MN, LH, PA, SB, and SW,
respectively.

Ground truth Total User's accuracy

MN LH PA SB SW

Classification MN 55 3 0 0 0 58 0.95
LH 1 47 4 4 3 59 0.80
PA 0 2 44 1 2 49 0.90
SB 0 0 0 27 11 38 0.71
SW 0 2 0 3 14 19 0.74
Total 56 54 48 35 30 Overall accuracy: 0.84

Kappa coefficient: 0.79Producer's accuracy 0.98 0.87 0.92 0.77 0.47

Table 12
The overall accuracies (OA) using SVM classifiers based on spectral, structural, and textural features individually and combined and using Murphy's average method for
the decision-level fusion.

Method SVM classification Decision-level fusiona

Spectral Structural Textural Combined Method 1 Proposed method

OA 0.69 0.77 0.71 0.81 0.85 0.89

a In the calculation of the OA for the proposed method, only the tree crowns assigned to a single species were considered. For method 1, uncertainty was not
considered, and every tree crown was assigned to a single species.
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consistent with the expectation and with the literature that multi-source
remotely sensed data have advantages over individual data sources and
that fusion at the decision level is promising compared that at the feature
level in discriminating between tree species (Fassnacht et al., 2016). The
uniqueness of this study in comparison with the existing methods re-
ported in the literature is that instead of ultimately assigning one single
species to an unknown tree crown, the normalized entropy approach was
proposed to measure uncertainty and to assign potentially a compound
class to the tree crown. Furthermore, the normalized entropy was
calculated differently for different tree crowns based on whether the
bodies of evidence generated conflicting classification results. As shown
for the cases in Tables 5 and 6 and the corresponding analysis, the
normalized entropy approach was effective and adaptive in character-
izing classification uncertainty and in assigning a compound class.

It can be argued that based on DST, the compound propositions could
be considered. There were two reasons that we did not consider them.
Firstly, it was not conceptually and computationally easy to determine
the mass functions for all possible compound propositions. Secondly, it
was not necessary. For some tree crowns, such as the 105 test crowns
(Table 9) without conflicts among the feature groups, there was no need
for the compound classes. In this study, we attempted to include com-
pound classes directly and to obtain their mass functions using SVM
classifications as well. The preliminary results did not show much
improvement compared with the proposed method, and further in-
vestigations are being pursued.

Hence, we propose the use of Murphy's average method instead of the
commonly used Dempster's combination rule to generate more intuitive
results in the presence of conflicts. In the calculation of the average mass
10
function using Murphy's average method, the mass functions from indi-
vidual groups of features were treated equally. In the literature, the
weighted average has been used based on the confidence level for each
piece of evidence (Stavrakoudis et al., 2014; Aval et al., 2019). The
weight for each piece of evidence is commonly taken as the overall
classification accuracy obtained based on individual groups of features.

For this study, as shown in Table 12, the accuracies obtained for the
spectral, structural, and textural features were similar. Furthermore, the
accuracies were calculated over all test samples and might not be
appropriate for individual test samples. The confidence level could be
measured for individual cases based on how the consistency of one piece
of evidence compares with others, which is often calculated based on
Jousselme's distance (Jousselme et al., 2001) defined in Equation (3),

d
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m!i; m!j

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2

�
m!i � m!j

�T

D
�
m!i � m!j

�s
; (3)

where D is a k by k matrix; k is the number of focal elements, and it is an
identity matrix for the set containing singletons. The conflict measure of
evidence i can be further calculated as the average distance between this
evidence and any other evidence.

Based on Jousselme's distance, Yong et al. (2004) and Liu et al. (2011)
calculated the credibility degree and the relative weighting factor to
weigh each piece of evidence in the calculation of the combined mass
function. For the case shown in Table 5, spectral features conflicted with
the structural and textural features that were indicated by the mass
functions and confirmed by the conflict measure in Table 13. Among the
three feature groups, textural features were more consistent with the
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spectral and structural features. Consequently, the textural features were
more credible and should be given more weight (Table 13). If Murphy's
weighted method was used, the combined mass functions for the honey
locust and Austrian pine were 0.383 and 0.617, respectively, and 0 for
the other species. The same method generated more support for the
Austrian pine than the “non-weight” one (Table 5).

As analyzed, the discriminant function between the honey locust and
the Austrian pine based on the textural features was very close to
0 (�0.0193, slightly favored the Austrian pine, Table 7). The textural
features might be credible based on their consistency with other features,
but they might not be reliable based on the discriminant function. This
example illustrates that caution should be exercised when using these
statistics-based measures. Given these results, we recommend using the
“non-weighted” average in the Murphy's method and evaluating the
conflict among bodies of evidence based on the SVM classification result.

In this study, individual tree crowns were delineated manually to
minimize the impacts of uncertainty in individual crown delineation on
the classification results. Even though methods have been developed to
delineate tree crowns automatically, the accuracy remains low. In future
work, we will develop methods to integrate individual tree delineation
and classification together in the workflow. Even though we are satisfied
with the manually delineated crowns based on visual inspection, it is
likely that the delineated crown boundaries might not exactly align with
the real ones. However, since the spectral, structural, and textural fea-
tures were mostly statistically based and calculated over a number of
pixels within crowns, the minor shift between the delineated and true
crown boundaries was not expected to affect the classification signifi-
cantly. This will be further investigated in future work.

6. Conclusion

In this study, an object-oriented decision-level fusion method was
used for tree species classification based on spectral, textural, and
structural features derived from multi-spectral and panchromatic imag-
ery and LiDAR data. Individual tree crowns served as the basic units, and
remote sensing features extracted for each tree crown were used for SVM
classification. Murphy's average method based on DST was used to
calculate the combined mass function for decision making purposes.

The species of interest included the Norway maple, honey locust,
Austrian pine, blue spruce, and white spruce. In addition to these species,
a two-species or a three-species compound class could be assigned to a
tree crown based on the normalized entropy in the presence of conflict.
Among the 223 test samples, 204 were assigned to one single species,
with an overall accuracy of 0.89. Furthermore, among the remaining 19
tree crowns where a compound class was assigned, the ground truth
species was among the compound class for most cases. These results
demonstrate the effectiveness of the proposed method.

Decision-level fusion was also shown to have a higher classification
accuracy relative to feature-level fusion method and with the classifica-
tion based on the spectral, textural, and structural features individually.
Furthermore, with decision-level fusion, the conflict and uncertainty
generated from individual bodies of evidence could be explicitly
addressed.

With individual tree crowns as the basic units, the spatial and struc-
tural features were extracted and used in addition to the more commonly
used spectral features in species classification. The addition of these
features proved to be beneficial. However, the misclassification among
the species indicated that additional information, such as temporal
Table 13
The conflict, credibility, and weight calculated for the case shown in Table 5.

Evidence Conflict Credibility Weight

Spectral 0.739 0.238 0.271
Structural 0.689 0.284 0.321
Textural 0.477 0.478 0.407
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features, may be needed to minimize misclassification between decidu-
ous species and coniferous species. There was also confusion evident in
this study between the blue and white spruce. Very high spatial resolu-
tion imagery obtained by Unmanned Aerial Vehicles (UAVs) and very
high-density LiDAR data can potentially be used to derive detailed spatial
and structural features to improve the accuracy of correctly classifying
different species from the same genus.

An in-depth analysis was carried out in this study to examine the
impact of conflict and uncertainty among feature groups on decision
making based on DST. It was shown that Murphy's average method can
generate intuitive results in the presence of conflicts compared with the
more commonly used Dempster's combination rule. Based on the in-
depth analysis, conflict among bodies of evidence was determined ac-
cording to the classification results based on individual groups of fea-
tures, and the corresponding normalized entropy was calculated to
decide whether one single species or a compound class was assigned to a
given tree crown. The decision made based on this approach is consistent
with the discriminant functions of the SVM classifications and the pro-
posed method could be generalized to cases with more evidence. In
future research, we plan to extend this method to include more classes of
species integrated with the individual tree crown delineation method to
map species automatically and over a larger area than that examined
here.
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