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Abstract: Deep learning (DL) has shown promising performances in various remote sensing ap-
plications as a powerful tool. To explore the great potential of DL in improving the accuracy of
individual tree species (ITS) classification, four convolutional neural network models (ResNet-18,
ResNet-34, ResNet-50, and DenseNet-40) were employed to classify four tree species using the
combined high-resolution satellite imagery and airborne LiDAR data. A total of 1503 samples of four
tree species, including maple, pine, locust, and spruce, were used in the experiments. When both
WorldView-2 and airborne LiDAR data were used, the overall accuracies (OA) obtained by ResNet-18,
ResNet-34, ResNet-50, and DenseNet-40 were 90.9%, 89.1%, 89.1%, and 86.9%, respectively. The OA
of ResNet-18 was increased by 4.0% and 1.8% compared with random forest (86.7%) and support
vector machine (89.1%), respectively. The experimental results demonstrated that the size of input
images impacted on the classification accuracy of ResNet-18. It is suggested that the input size of
ResNet models can be determined according to the maximum size of all tree crown sample images.
The use of LiDAR intensity image was helpful in improving the accuracies of ITS classification and
atmospheric correction is unnecessary when both pansharpened WorldView-2 images and airborne
LiDAR data were used.

Keywords: deep learning; high-resolution satellite images; LiDAR; tree species classification

1. Introduction

Trees can reduce urban air pollution and noise, prevent soil erosion, and beautify
the environment, which is important for ecosystems. The identification and mapping of
the composition of tree species and the analysis of spatial distribution of tree species is
crucial for forest conservation and urban planning and management. The remote sensing
technology, which has the advantages of covering large areas and revisiting after several
hours or days, has been employed in tree species identification for decades [1,2]. As early as
the 1960s, aerial photographs were explored for the recognition of tree species [1]. In 1980,
Walsh explored satellite data (such as Landsat) to identify and map 12 land-cover types,
including seven coniferous forest types [2]. Early studies on tree species classification were
mainly conducted at the pixel level [3,4]. For example, Dymond et al. used multitemporal
Landsat TM imagery to improve the classification accuracy of deciduous forests at the
landscape scale [3]. Tree species classification at individual tree level using high-resolution
imagery can also date back to the 2000s [5–7]. The related works were mainly conducted
using high-resolution aerial photographs. The rapid development of platforms and sensors
makes the availability of high-resolution multisource data, such as airborne hyperspectral
imagery and airborne LiDAR data. Recently, a large number of works at individual tree
level explored the use of airborne hyperspectral and LiDAR (light detection and ranging)
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data, or the combination of the two [8]. Studies showed that the individual tree species
(ITS) classification using the combined airborne hyperspectral images and airborne LiDAR
data obtained higher accuracy than a single data source [9–13]. For example, hyperspectral
and LiDAR data were fused at pixel-level by Jones et al. [9] and then employed to classify
11 tree species in temperate forests of coastal southwestern Canada. The classification using
a support vector machine (SVM) achieved an overall accuracy (OA) of 73.5%. Furthermore,
individual tree crown-based classification has been demonstrated to perform better than
pixel-based classification. Alonzo et al. [10] used the fusion of airborne visible/infrared
imaging spectrometer (AVIRIS) imagery and airborne LiDAR data to map 29 common
tree species at tree crown level in an urban area of the USA, which yielded an OA of
83.4% using canonical discriminant analysis. Shen and Cao [11] employed random forest
(RF) to classify individual tree crowns using airborne hyperspectral and LiDAR data
covering a subtropical forest in southeast China. An OA of 90.6% was achieved by the
classification using both hyperspectral and LiDAR metrics, considering only sunlit portions
of tree crowns. The outstanding performances of such works mainly attribute to the useful
spectral and textural characteristics provided by airborne hyperspectral imagery, along
with heights and structural metrics derived from airborne LiDAR data [9].

The recent increase in the availability of high spatial resolution satellite imagery,
such as WorldView-2/3/4, has attracted a lot of attention to exploiting its use in ITS
classification [14–19]. For example, Pu et al. [14] evaluated the capabilities of IKONOS
and WorldView-2 (WV-2) to identify and map tree species of urban forest. Their results
demonstrated the potential of WV-2 imagery for the identification of seven tree species
in urban area. The classification using a decision tree classifier (CART) achieved an
OA of 62.93%. Madonsela et al. [17] used multi-phenology WV-2 imagery and RF to
classify savannah tree species. An OA of 76.40% for four tree species was achieved. The
combination of high-resolution aerial or satellite images and airborne LiDAR data has also
been explored for ITS classification [20–23]. Specifically, Deng et al. [20] compared several
classification algorithms for the classification of four tree species using simultaneously
acquired airborne LiDAR data and true colour (RGB) images with a spatial resolution of
25 cm. Several classification algorithms were employed, and the highest OA (90.8%) was
provided by the quadratic SVM.

Based on the literature, exemplified by the above-mentioned studies, the most com-
monly used classifiers for ITS classification are SVM and RF. One of the challenges for
this kind of classification algorithms is the extraction and selection of useful features that
are crucial for accuracy. As a result, deep learning (DL) is gaining attention in ITS classi-
fication due to its capability of automatic learning from examples and allowing features
to be extracted directly from data. DL, inspired by the human visual perception system,
has initially gained success in computer vision and medical applications. Typical DL
networks include convolutional neural networks (CNNs), stacked autoencoders, deep
belief networks, and recurrent neural networks. Among these networks, CNNs are the
most potential and popular for perceptual tasks. The application of CNNs has grown very
fast in remote sensing since 2014. CNNs have been successfully used in various remote
sensing tasks, such as image scene classification, object detection, image pan-sharpening
and super-resolution, image registration, and image segmentation [24–27]. In the context of
remote sensing image classification, the commonly used CNN models include AlexNet [28],
VGG [29], ResNet [30], Dense Convolutional Network (DenseNet) [31,32]. Despite the
popularity of CNN in remote sensing image classification, its exploration in ITS classi-
fication is still limited. In 2019, Hartling et al. [33] examined the potential of DenseNet
in the identification of dominant tree species in a complex urban environment using the
combination of WV-2 VNIR, WV-3 SWIR, and LiDAR datasets. DenseNet-40 yielded an
OA of 82.6% for the classification of eight dominant tree species, which was significantly
higher than those obtained by RF and SVM.

In this study, a comprehensive analysis of several CNN models (ResNet-18, ResNet34,
ResNet-50, and DenseNet-40) for ITS classification was performed using the combination
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of the panchromatic band of WV-2, a pansharpened version of the WV-2 multispectral
imagery, and a digital surface model (DSM) and an intensity map derived from airborne
LiDAR data. The performances of the CNN models were also compared with those of
traditional machine learning classification methods (such as RF and SVM). The helpfulness
of the LiDAR intensity map and the atmospheric correction of the WV-2 imagery were
analyzed to provide detailed directions for related studies. The input size of sample
images of ResNet and DenseNet was firstly discussed in this work, which is meaningful
for improving the performances of CNN models in ITS classification.

2. Study Area and Data
2.1. Study Area

The study area of this work is located on the Keele campus of York University, Toronto,
Canada (centered at 43.7735◦ N, 79.5019◦ W), as shown in Figure 1a. Trees mainly grow
along roads and in wood lots. The primary tree species in this area include maple, ash,
locust, oak, pine, and spruce.
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2.2. Datasets

The WorldView-2 (WV-2) imagery, acquired in July 2016, was provided by the York
University Map Library. The WV-2 image includes one panchromatic (PAN) band and
eight multispectral (MS) bands. The spatial resolution of the PAN band and MS bands is
0.4 m by 0.4 m and 1.6 m by 1.6 m, respectively.

The LiDAR data was collected using a Leica ALS70 system in April 2015 at a flying
height of 1300 m and a flying speed of 160 knots (82.3 m/s). The data has an average
point density of approximately 10.0 pts/m2. The LiDAR elevations were compared with
independently surveyed ground points to quantify the accuracy statistically. The horizontal
accuracy was 30 cm, whereas the fundamental vertical accuracy was 10 cm.

An inventory map of the study area was provided by the campus services and business
operations of York University. The inventory map recorded more than 5000 trees with their
attributes, including species, heights, crown sizes, and diameter breast height. The initial
survey of the trees was carried out in 2014, and the measurements were then updated in 2015.

3. Methodology

Four object-based CNN networks were designed and implemented in this study to
classify four tree species using the combined WV-2 imagery and LiDAR data. The flowchart
of the method is presented in Figure 2 [34].
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Figure 2. The flowchart of the proposed method.

The LiDAR point cloud was first processed using ENVI LiDAR Version 5.3.0 (L3Harris
Geospatial, Broomfield, CO, USA) to generate a digital surface model (DSM), a digital
elevation model (DEM), and an intensity image. The intensity of LiDAR data was defined
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as the amount of reflected energy at the peak amplitude of the returned signal and has been
demonstrated to be useful for distinguishing different tree species [35,36]. ENVI LiDAR
filtered the point cloud data with filters based on triangulated irregular network (TIN) for
the generation of DEM. We used the default parameters provided by the software, which
include the maximum error of terrain TIN of 10 cm and the maximum TIN polygon density
of 10,000. The intensity image and the DSM were produced with a spatial resolution of
0.25 m. The DEM was generated with a spatial resolution of 0.5 m, the highest resolution for
DEM provided by the software. The DSM, DEM, and intensity image were then resampled
to the spatial resolution of 0.4 m by 0.4 m using MATLAB to match the spatial resolution
of the WV-2 imagery. A normalized DSM (nDSM), which is also referred to as a canopy
height model (CHM), was derived as the difference between the DSM and DEM using
MATLAB. Atmospheric correction was performed on the MS bands of the WV-2 imagery
using the FLAASH Atmospheric Correction Model of the ENVI software to obtain an
8-band reflectance image of the study area. The resulting reflectance image was then
orthorectified base on the DSM and the LiDAR intensity, along with the PAN band. Then,
a pansharpened MS image with a spatial resolution of 0.4 m was produced through the
fusion of the PAN band with the 8-band reflectance image. The fused MS, PAN, and the
nDSM were then used to delineate individual tree crowns. Regarding the tree crowns and
the inventory map, tree species samples were manually selected and labeled to obtain the
sample dataset. Finally, three ResNet models and a DenseNet model were used to classify
the tree species, and the classification results were evaluated and compared with traditional
machine learning classification methods, namely SVM and RF. The four CNN models were
selected because they gave excellent performances in similar works. The details of the four
CNN models can be found in Section 3.4.1.

The details of image orthorectification, individual tree crown delineation, tree crown
sample generation and sample dataset preparation, tree species classification using CNN
models and traditional machine learning methods, and accuracy assessment metrics are
introduced in the following subsections.

3.1. Image Orthorectification

The orthorectification of the MS and PAN bands of WV-2 imagery was carried out by
using the ENVI software (L3Harris Geospatial, Broomfield, CO, USA). Eight GCPs that
were manually identified across the whole image were employed in the orthorectification
to align the MS and PAN images with the LiDAR data. A sub-pixel accuracy (with the root
mean square error of 0.43 pixel) was achieved. The orthorectified PAN image is shown in
Figure 3 as an example.

The orthorectified PAN and MS images were then fused using the Gramm-Schmidt
pansharpening method provided in the ENVI software. The resulting pansharpened MS
image with a spatial resolution of 0.4 m and the LiDAR nDSM were then employed for the
delineation of individual tree crowns.

3.2. Individual Tree Crown Delineation

Both the pansharpened MS image and the LiDAR nDSM were used for the individual
tree crown delineation. To separate trees from buildings and grasses, a hierarchical rule-
based classification method proposed in [37] was first employed to produce a classification
map with six categories, including building, road, tree, grass, water body, and shadow.
During the classification, ground pixels were first separated from the non-ground pixels
based on the height information provided by the nDSM map. The non-ground pixels were
then divided into the tree class and the building class based on the corresponding values in
a normalized difference vegetation index (NDVI) map generated using the pansharpened
MS image. A preliminary tree map was then obtained based on the tree class. In this work,
the NDVI was generated using the red and NIR1 bands of the WV-2 imagery. A subset of
the pansharpened MS image and nDSM is shown in Figure 4a,b, respectively. A subset
of the tree map is shown in Figure 4c. Due to the difference in acquisition time and the
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residual of co-registration, the preliminary tree map may include some pixels that are not
corresponding to trees in the nDSM map. To obtain tree crowns that match well with both
the WV-2 images and nDSM, only the overlapped portion of the preliminary tree map and
nDSM were used for individual tree crown delineation. Therefore, the pixels that have
high values in nDSM but do not belong to tree pixels in the preliminary tree map were
set to zero. This resulted in a modified version of the nDSM map, which was used in the
following steps for individual tree crown delineation.
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The multiscale analysis and segmentation (MSAS) method proposed in [38] was used
for the delineation of individual tree crowns from the nDSM map. The MSAS method
consists of three steps. The first step involved scale analysis to determine the sizes of
multiscale morphological filters, which were used to detect tops of tree crowns of different
sizes. Next, the nDSM map was filtered at multiple scale levels, and the marker-controlled
watershed segmentation method was then adopted to detect candidate tree crowns of
different sizes. Finally, the candidate tree crowns were merged to produce a tree crown
map. In this work, scale sizes ranging from 9 to 23 pixels with a step of 2 pixels were
used in the first step. The resulting tree crown map was manually refined according to the
LiDAR data to eliminate some false positives, which were mainly caused by the different
acquisition times of the WV-2 imagery and LiDAR. For example, some ashes shown in the
LiDAR data disappeared in the WV-2 imagery. A subset of the individual tree crown map
is shown in Figure 4d. The refined version was finally converted to tree crown polygons to
facilitate the selection of tree crown samples.
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3.3. Tree Crown Sample Generation and Sample Dataset Preparation

Tree samples were manually selected from the delineated tree crown polygons, as
shown in Figure 4e,f. Some of the tree crown polygons were further validated using a
field investigation. Finally, as shown in Table 1, we obtained 1503 samples in total, which
include 580, 408, 351, and 164 samples for maple, pine, locust, and spruce, respectively.

The tree crown sample images with 11 bands were generated through using two steps.
First, the PAN band, eight fused MS bands, intensity image, and nDSM were merged band
by band to produce a single image with 11 bands. This image was then clipped according to
the minimum exterior rectangle of each tree crown polygon to produce tree crown sample
images with a band number of 11.

The tree crown sample images were divided into two parts, which were used for
training and testing, respectively. For each species, 70% (1052 in total) of the sample images
were used for training, while the other 30% (451 in total) were used for testing.

We adopted data augmentation to increase the number of training samples. Specif-
ically, the original sample images were rotated by 90◦, 180◦, and 270◦, separately and
flipped horizontally and vertically. A total number of 6312 training samples were obtained,
as presented in Table 1.

Table 1. The statistics of the sample dataset.

Tree Species Sample Set Training Sample Set after
Data AugmentationTotal Testing Training

Maple 580 174 406 2436
Locust 351 105 246 1476
Pine 408 123 285 1710

Spruce 164 49 115 690
Total 1503 451 1052 6312
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3.4. Tree Species Classification
3.4.1. CNN Models

Typical CNN models include convolutional layers, pooling layers, and fully connected
layers. The residual learning framework was proposed to resolve the degradation problem
exposed during the training of deep networks [30]. Residual networks were implemented
by inserting shortcut connections into plain networks, which add no extra parameters or
computational complexity. Several ResNet models with different numbers of layers, which
include ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-105, were proposed.
Compared with the sizes of sample images used for scene classification, the size of tree
crown samples was relatively small. Deeper networks have more convolution layers and
more pooling layers which are used to reduce the size of output features. When the size of
output features was reduced to 1 × 1 after a pooling layer, no additional features can be
extracted by the following layers. In this case, some parameters may be untrainable. Deeper
networks may even provide lower classification accuracy if the input image have relatively
small sizes. Consequently, ResNet models with a relatively shallow network, such as
ResNet-18, ResNet-34, and ResNet-50, were used in this work for ITS classification. As an
example, the architecture of ResNet-18 is shown in Figure 5. It comprises a convolutional
layer with a filter size of 7 × 7, 16 convolutional layers with a filter size of 3 × 3, and a
fully connected layer. A shortcut connection is added to each pair of 3 × 3 filters, which
constructs a residual function.
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Inspired by the idea of adding shortcut connections, DenseNet was proposed in 2017 [31].
It is approved that DenseNets have some advantages, such as alleviating the problem of
vanishing-gradient and strengthening the propagation of feature. They can also reduce the
number of parameters. DenseNets include multiple densely connected dense blocks and
transition layers. Transition layers are the layers between dense blocks. Each transition layer
consists of a 1 × 1 convolutional layer followed by a 2 × 2 average pooling layer. A similar
reason for the use of ResNet models, DenseNet-40, which has a shallower architecture than



Forests 2021, 12, 1697 9 of 22

other DenseNets, was employed in this study. DenseNet-40 has three transition layers and
three dense blocks, which have a growth rate of 4. Figure 6 shows its architecture.
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Compared with traditional machine learning methods, the advantage of CNN-based
classification methods is that we do not need to design and select features used for classifi-
cation. Instead, we just need to feed sample images (of which the bands we can design)
into the models. Three experiments using different band combinations were performed
for the classification using the CNN models. As shown in Table 2, the first combination
used only the PAN, denoted as P, and the second band combination used both the PAN
and eight pansharpened MS bands, denoted as P+M. The third considered both the WV-2
imagery and LiDAR nDSM map was denoted as P+M+H, whereas the forth combination
including the WV-2 imagery and the LiDAR nDSM and the intensity image was denoted
as P+M+H+I.

Table 2. The band combinations used for the classification using CNN models.

Name Bands Total Number

P The PAN band 1
P+M The PAN and eight pansharpened MS bands 9

P+M+H The PAN and eight pansharpened MS bands and the nDSM 10

P+M+H+I The PAN and eight pansharpened MS bands, the nDSM and the
the intensity image 11

For CNN-based ITS classification, all the training and testing samples were resized to
a size of 32 × 32 pixels, according to the average size of all the tree crown samples. The
classification using the four CNN models was performed on Python 3.6 and Keras 2.2. The
Adam optimizer was employed. The initial learning rate and the maximum epoch number
were set to 0.001 and 500, respectively. An early stopping strategy was also employed to
avoid over-fitting problems.

3.4.2. Traditional Machine Learning Classification Methods

As commonly used traditional machine learning classification methods for land cover
classification, RF and SVM algorithms were considered in this work for ITS classification.
As introduced in Section 3.4.1, we need to select useful features for the two classifiers.
This is different from CNN-based classification, which has the capability of automatic
learning from examples and allowing features to be extracted directly from images. As
shown in Table 3, spectral and texture features from the WV-2 imagery and height metrics



Forests 2021, 12, 1697 10 of 22

derived from nDSM were calculated for each tree crown sample [12]. A number of 18
spectral features were obtained using the mean and standard deviation of the PAN and
pansharpened MS bands. Texture features were extracted from the PAN band using the
grey-level co-occurrence matrix (GLCM). The considered texture metrics include contrast,
correlation, energy, and homogeneity [22,39,40]. In this case, 10 height variables, as shown
in Table 3, were extracted from the nDSM [13,20,23,41].

Additionally, five vegetation indexes were considered for both the RF and SVM. The
indexes include the normalized difference vegetation index (NDVI) [42–44] using NIR1, the
NDVI using NIR2 [45], the green normalized difference vegetation index (GNDVI) [45,46],
the enhanced vegetation index (EVI) [46,47], and the visible atmospherically resistant
indices (VARI) [48,49] using the red-edge band. The details of the five indexes are shown
in Table 4.

Table 3. Feature variables used for traditional machine learning classification.

Feature Name Description Image Bands Feature Number

SpecMean Mean value of each sample in each spectral band
PAN+MS

9
SpecStd Standard deviation of each sample in each spectral band 9

TextCon Contrast of the GLCM texture of each sample

PAN 4
TextCor Correlation of the GLCM texture of each sample
TextEn Energy of the GLCM texture of each sample

TextHom Homogeneity of the GLCM texture of each sample

H_Max Maximum height of each sample

nDSM 10

H_Min Minimum height of each sample
H_Mean Mean height of each sample

H_Std Height deviation of each sample
Area/H_Max Ratio of crown area to the maximum height of each sample
Area×H_Max Product of crown area and the maximum height of each sample

H_Max-H_Mean Difference between the maximum crown height and the mean
height of tree crown

(H_Max-
H_Min)/H_Max

Ratio of the difference between the maximum and minimum of
crown heights to the maximum crown height

(H_Max-
H_Mean)/H_Max

Ratio of the difference between the maximum and mean of crown
heights to the maximum crown height

H_Std/H_Max Ratio of standard deviation of tree crown heights to the
maximum crown height

Total 32

Table 4. Vegetation indexes employed for ITS classification.

Vegetation Index Name Abbreviation Formula References

Normalized Difference Vegetation Index NDVI (NIR1 − RED)/(NIR1 + RED) [43–45]
Normalized Difference Vegetation Index-NIR2 NDVI2 (NIR2 − RED)/(NIR2 + RED) [46]
Green Normalized Difference Vegetation Index GNDVI (NIR1 − GREEN)/(NIR1 + GREEN) [46,47]

Enhanced Vegetation Index EVI 2.5 × (NIR1 − RED)/(NIR1 + 6 × RED − 7.5
× BLUE + 1) [47,48]

Visible Atmospherically Resistant Index NDVI-RE (RED_EDGE − RED)/(RED_EDGE + RED) [48,49]

Different feature combinations were tested for the classification using RF and SVM.
As shown in Table 5, six feature combinations were considered in the experiment. The
first four feature combinations considered only the WV-2 imagery, while the other two
combinations involved both the WV-2 imagery and airborne LiDAR data. The feature
combination P+M+V+T+H+I was compared with the feature combination P+M+V+T+H to
evaluate the effectiveness of the LiDAR intensity image for tree species classification. We
used the radial basis function as the kernel function for the SVM classifier and a decision
tree parameter of 500 for the RF classifier.
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Table 5. Feature combinations considered for the RF and SVM classifiers.

Name Features Number

P SpecMean and SpecStd of the PAN band 2

P+M SpecMean and SpecStd of the PAN and pansharpened MS bands 18

P+M+V SpecMean and SpecStd of the PAN and pansharpened MS bands
and five vegetation indices 23

P+M+V+T SpecMean and SpecStd of the PAN and pansharpened MS bands,
five vegetation indices, and four GLCM texture features 27

P+M+V+T+H
SpecMean and SpecStd of the PAN and pansharpened MS bands,

five vegetation indices, four GLCM texture features, and 10 height
variables derived from the nDSM

37

P+M+V+T+H+I

SpecMean and SpecStd of the PAN and pansharpened MS bands,
five vegetation indices, four GLCM texture features, 10 height
variables derived from the nDSM, and the mean and standard

deviation of the LiDAR intensity image

39

3.5. Accuracy Assessment

A confusion matrix was employed to evaluate the accuracy of ITS classification using
the testing samples. Producer accuracy (PA), user accuracy (UA), OA, and kappa coefficient
were derived from the matrix. Average accuracy (AA) was the average of PA and UA.

4. Experimental Results
4.1. Results of the CNN Models

The OA and kappa values of CNN-based classification using the four band combi-
nations P, P+M, P+M+H, and P+M+H+I are shown in Figure 7, and the AA values of
each tree species are presented in Figure 8. It can be observed that the band combination
P+M+H+I provided the highest OAs for each CNN model, followed by the band combina-
tions P+M+H and P+M. This finding supports the importance of the nDSM and intensity
image in improving the classification accuracy. For example, the OA of ResNet-18 obtained
using the band combination P+M+H+I was 90.9%, which was increased by 5.3% compared
with that of the band combination P+M. The AA values of Locust, Pine, and Spruce were
also increased by 5.4%, 8.6%, and 15.6%, respectively. The band combination P+M yielded
higher OAs than those of the band combination P using only the WV-2 PAN imagery,
indicating the effectiveness of the eight MS bands for ITS classification.

Among the four CNN models, ResNet-18 and ResNet-34 yielded higher OA values
than the other two CNN models for the band combinations P+M, P+M+H, and P+M+H+I.
ResNet-18 provided the highest OA values for the band combination P+M+H+I, whereas
ResNet-34 offered the highest OA values for the band combination P+M and the band
combination P+M+H.

In terms of the AA accuracies of each tree species, the highest AA values of the four
tree species were reached by ResNet-18 using the band combination P+M+H+I. The AA
values of the pine class were the highest, followed by those of the maple and spruce
class. In contrast, the AA values of the locust class were the lowest. For the spruce class,
the band combination P+M+H+I offered significantly higher AA values than those of
the combinations P+M and P+M+H, indicating that LiDAR intensity data is crucial for
improving the classification accuracy of spruce.



Forests 2021, 12, 1697 12 of 22

Forests 2021, 12, x FOR PEER REVIEW 12 of 22 
 

 

4. Experimental Results 
4.1. Results of the CNN Models 

The OA and kappa values of CNN-based classification using the four band combina-
tions P, P+M, P+M+H, and P+M+H+I are shown in Figure 7, and the AA values of each 
tree species are presented in Figure 8. It can be observed that the band combination 
P+M+H+I provided the highest OAs for each CNN model, followed by the band combi-
nations P+M+H and P+M. This finding supports the importance of the nDSM and intensity 
image in improving the classification accuracy. For example, the OA of ResNet-18 ob-
tained using the band combination P+M+H+I was 90.9%, which was increased by 5.3% 
compared with that of the band combination P+M. The AA values of Locust, Pine, and 
Spruce were also increased by 5.4%, 8.6%, and 15.6%, respectively. The band combination 
P+M yielded higher OAs than those of the band combination P using only the WV-2 PAN 
imagery, indicating the effectiveness of the eight MS bands for ITS classification. 

Among the four CNN models, ResNet-18 and ResNet-34 yielded higher OA values 
than the other two CNN models for the band combinations P+M, P+M+H, and P+M+H+I. 
ResNet-18 provided the highest OA values for the band combination P+M+H+I, whereas 
ResNet-34 offered the highest OA values for the band combination P+M and the band 
combination P+M+H. 

In terms of the AA accuracies of each tree species, the highest AA values of the four 
tree species were reached by ResNet-18 using the band combination P+M+H+I. The AA 
values of the pine class were the highest, followed by those of the maple and spruce class. 
In contrast, the AA values of the locust class were the lowest. For the spruce class, the 
band combination P+M+H+I offered significantly higher AA values than those of the com-
binations P+M and P+M+H, indicating that LiDAR intensity data is crucial for improving 
the classification accuracy of spruce. 

 
Figure 7. The overall accuracy (a) and Kappa coefficient (b) values obtained by the four CNN models using different band 
combinations. 

Figure 7. The overall accuracy (a) and Kappa coefficient (b) values obtained by the four CNN models using different
band combinations.

Forests 2021, 12, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 8. The average accuracies (AA) of each tree species obtained by ResNet-18 (a), ResNet-34 (b), ResNet-50 (c), and 
DenseNet-40 (d) using different band combinations. 

4.2. Results of the RF and SVM 
The corresponding classification results are presented in Figures 9 and 10. It shows 

that SVM achieved higher OA and kappa coefficients than RF for each of the six feature 
combinations. The feature combination P+M+V+T+H+I yielded the highest OA values, 
whereas the feature combination P obtained the lowest OA values for both RF and SVM. 
The OA values of the feature combination P+M+V using RF and SVM were not higher 
than those of P+M, indicating that the inclusion of the five vegetation indices provided 
limited improvements in the accuracy. In contrast, P+M+V+T yielded significantly higher 
OA values than P+M. This result indicated that it was very necessary to include texture 
features when only on the WV-2 imagery was considered for ITS classification. The feature 
combination P+M+V+T+H improved the accuracy more significantly than P+M+V+T, in-
dicating the importance of LiDAR nDSM in the classification. The feature combination 
P+M+V+T+H+I yielded higher OA values than those of P+M+V+T+H for both RF and SVM. 
This indicates that the consideration of the LiDAR intensity image is also helpful for im-
proving the classification accuracy. 

Additionally, SVM offered higher AA values for all four tree species than RF for the 
feature combinations P+M+V+T and P+M+V+T+H+I. For SVM, the AA value of the pine 

Figure 8. The average accuracies (AA) of each tree species obtained by ResNet-18 (a), ResNet-34 (b), ResNet-50 (c), and
DenseNet-40 (d) using different band combinations.



Forests 2021, 12, 1697 13 of 22

4.2. Results of the RF and SVM

The corresponding classification results are presented in Figures 9 and 10. It shows
that SVM achieved higher OA and kappa coefficients than RF for each of the six feature
combinations. The feature combination P+M+V+T+H+I yielded the highest OA values,
whereas the feature combination P obtained the lowest OA values for both RF and SVM.
The OA values of the feature combination P+M+V using RF and SVM were not higher
than those of P+M, indicating that the inclusion of the five vegetation indices provided
limited improvements in the accuracy. In contrast, P+M+V+T yielded significantly higher
OA values than P+M. This result indicated that it was very necessary to include texture
features when only on the WV-2 imagery was considered for ITS classification. The feature
combination P+M+V+T+H improved the accuracy more significantly than P+M+V+T,
indicating the importance of LiDAR nDSM in the classification. The feature combination
P+M+V+T+H+I yielded higher OA values than those of P+M+V+T+H for both RF and
SVM. This indicates that the consideration of the LiDAR intensity image is also helpful for
improving the classification accuracy.

Additionally, SVM offered higher AA values for all four tree species than RF for the
feature combinations P+M+V+T and P+M+V+T+H+I. For SVM, the AA value of the pine
class was higher than other classes, while that of the locust class was the lowest. Similar
results can also be observed for RF.
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4.3. Comparisons between CNN Models and Machine Learning Methods

Comparisons between CNN models and machine learning methods were conducted
in two aspects in this study. First, the ITS classification accuracies of CNN models and
traditional machine learning obtained using only the WV-2 imagery were compared. As
shown in Table 6, the classification results of the four CNN models obtained using the
test samples with the band combination P+M were compared with those of RF and SVM
generated using the feature combination P+M+V+T. Then, the second comparison was
conducted using both the WV-2 imagery and LiDAR data. As shown in Table 7, the accu-
racies of the four CNN models obtained using test samples with the band combination
P+M+H+I were compared with those of RF and SVM generated using the feature com-
bination P+M+V+T+H+I. The band combination P+M+H+I includes the PAN band, the
eight pansharpened MS bands, the nDSM, and the intensity image, whereas the feature
combination P+M+V+T+H+I includes spectral and texture measures, NDVI indices, height
metrics, and intensity-based measures.
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Table 6. Classification accuracies of the four CNN models, RF, and SVM obtained using only the
WV-2 imagery. The accuracies of four CNN models were yielded using the band combination P+M
and those of RF and SVM were obtained using the feature combination P+M+V+T.

Model Class PA (%) UA (%) AA (%) OA (%) Kappa

ResNet-18

Maple 90.4 92.5 91.5

85.6 0.797
Locust 80.2 77.1 78.7
Pine 86.4 87.8 87.1

Spruce 76.6 73.5 75.1

ResNet-34

Maple 91.1 93.7 92.4

87.1 0.818
Locust 84.8 74.3 79.6
Pine 85.8 93.5 89.7

Spruce 80.4 75.5 78.0

ResNet-50

Maple 85.6 89.1 87.4

82.7 0.756
Locust 76.6 68.6 72.6
Pine 87.9 88.6 88.3

Spruce 71.2 75.5 73.4

DenseNet-
40

Maple 94.4 86.8 90.6

84.9 0.789
Locust 76.3 82.9 79.6
Pine 84.6 89.4 87.0

Spruce 74.5 71.4 73.0

RF

Maple 84.4 87.4 85.9

80.5 0.723
Locust 70.5 63.8 67.2
Pine 82.9 95.1 89.0

Spruce 77.8 56.0 66.9

SVM

Maple 88.2 86.2 87.2

83.8 0.771
Locust 74.0 73.3 73.7
Pine 85.3 95.1 90.2

Spruce 85.4 70.0 77.7
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Table 7. Classification accuracies of the testing dataset using both WV-2 and LiDAR data. The
accuracies of four CNN models were yielded using the band combination P+M+H+I and those of RF
and SVM were obtained using the feature combination P+M+V+T+H+I.

Model Class PA (%) UA (%) AA (%) OA (%) Kappa

ResNet-18

Maple 87.5 96.6 92.1

90.9 0.871
Locust 92.9 75.2 84.1
Pine 93.8 97.6 95.7

Spruce 93.5 87.8 90.7

ResNet-34

Maple 93.3 87.4 90.4

89.1 0.847
Locust 79.6 85.7 82.7
Pine 91.6 97.6 94.6

Spruce 90.9 81.6 86.3

ResNet-50

Maple 86.8 94.3 90.6

89.1 0.845
Locust 86.3 78.1 82.2
Pine 92.2 95.9 94.1

Spruce 97.4 77.6 87.5

DenseNet-
40

Maple 88.8 91.4 90.1

86.9 0.815
Locust 82.2 79.0 80.6
Pine 89.2 94.3 91.8

Spruce 82.9 69.4 76.2

RF

Maple 90.1 88.5 89.3

86.7 0.813
Locust 76.4 77.1 76.8
Pine 89.8 94.3 92.1

Spruce 89.1 82.0 85.6

SVM

Maple 92.2 88.5 90.4

89.1 0.848
Locust 79.8 82.9 81.4
Pine 92.1 95.1 93.6

Spruce 91.8 90.0 90.9

It can be seen from Table 6 that ResNet-34 provided an OA value of 87.1% and a kappa
coefficient of 0.818, which were the highest, followed by ResNet-18 and DenseNet-40. The
accuracies of ResNet-18, ResNet-34, and DenseNet-40 were also significantly higher than those
of RF and SVM. Furthermore, ResNet-34 yielded higher AA values for the pine and spruce
class than ResNet-18, which contributes to the increase of the OAs of ResNet-34. Compared
with RF and SVM, the OA values of ResNet-34 was increased by 6.6% and 3.3%, respectively.

Table 6 also shows that the AA values of the pine and spruce classes provided by RF
and SVM were comparable to those corresponding to the CNN models. However, the AA
values of maple and locust offered by RF and SVM were remarkably lower than those of
ResNet-18, ResNet-34, and DenseNet-40. This may be because that maple and locust trees
usually have relatively larger crown sizes than pine and spruce trees. A large crown size
can provide sufficient features that can be learned by the CNN models, which have the
ability to learn deep abstract features. Consequently, the experimental results demonstrated
that ResNet-18 and ResNet-34 outperformed RF and SVM for ITS classification using only
WV-2 imagery.

It can be seen from Table 7 that ResNet-18 offered the highest OA and kappa coeffi-
cients, followed by ResNet-34, ResNet-50, and SVM. Compared with SVM, the OA and
kappa coefficient of ResNet-18 were increased by 1.8% and 0.023, respectively. The OA
and kappa values of ResNet-34 and ResNet-50 were very close to those of SVM. This
result indicates that SVM can provide comparable results with ResNet-34 and ResNet-50
when the combined WV-2 and LiDAR data were used, in case of the spectral and texture
characteristics, height parameters, and intensity-based measures are considered. How-
ever, the extraction and selection of valuable features are important for both RF and SVM.
Table 7 also shows that the accuracies of DensNet-40 and RF were very close, although
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DenseNet-40 yielded significantly higher OA values than RF in the case of the classification
using only WV-2 imagery.

ResNet-18 achieved the highest AA values for maple, locust, and pine, whereas SVM
yielded the highest AA for spruce. Specifically, ResNet-18 reached an AA value of 84.1% for
the locust class, which shows distinct improvement compared with the other four methods.
SVM reached an AA of 90.9% for spruce, which is slightly higher than ResNet-18 (90.7%).
DenseNet-40 achieved lower OA than that of SVM, mainly due to providing a significantly
lower accuracy for the spruce class than other methods. Compared with other tree species,
tree crowns of spruce are relatively small, which provides limited features that can be
learned by CNN models. In the other hand, DenseNet-40 has a deeper network architecture
and a larger number of pooling operations than ResNet-18 and ResNet-34. Consequently,
DeseNet-40 cannot obtain higher accuracies than ReseNet-18 and ResNet-34 in this work.

5. Discussion
5.1. Comparison with Related Works

Several studies have explored the application of CNN models used for tree species
classification. For example, Hartling et al. [33] also explored DenseNet-40 for ITS classifica-
tion in an urban area using the combination of 18 bands derived from WV-2, WV-3, and
LiDAR datasets, which includes an 8-band pansharpened WV-2 imagery, 8 SWIR bands
of the WV-3 imagery, a LiDAR intensity image, and the PAN band of WV-2. In the work,
DenseNet-40 yielded significantly higher OA than RF and SVM in the classification of eight
dominant tree species and an AA of 88.57% for the Austrian pine class. Different from
the work of Hartling et al., our work used the combination of 11 bands from WV-2 and
LiDAR datasets, which includes the LiDAR DSM map but does not use additional WV-3
SWIR imagery. In our work, DenseNet-40 provided an AA value of 91.8% for the pine
class, which is slightly higher than the AA of the Austrian pine class. This may be due to
the fact that we included the LiDAR DSM map for ITS classification and considered fewer
tree species than their work. However, the classification results of DenseNet-40 were not
compared with those of ResNet models, as the later was not considered in their study.

Yan et al. [50] compared the performances of AlexNet, GoogLeNet, and three ResNet
models (ResNet-18, ResNet-14, and ResNet-50) for ITS classification of 6 tree species using
only WV-3 imagery. In this work, the ResNet-18 model yielded an OA of 74.8%, which
is higher than ResNet-34 and ResNet-50, and an AA of 81.6% for the pine class. In our
experiment using only the 8-band pansharpened WV-2 imagery, the OA of ResNet-18
was 85.6%, which is higher than ResNet-50 but lower than ResNet-34. We yielded an AA
of 87.1% for the pine class, which is higher than that in their work. Our work provided
higher accuracies mainly due to the fact that we used LiDAR DSM for individual tree
crown delineation, which increased the accuracy of tree crowns. As DenseNet-40 was not
considered in their study, the classification results of the three ResNet models were not
compared with that of DenseNet-40.

Different from land cover classification tasks using semantic segmentation, which use
sample images with a size of 512 × 512 or even larger, the size of individual tree crowns on
high-resolution satellite images are relatively small. In this case, it is very necessary to discuss
about how to select CNN models for ITS classification and how to decide the input image
size of CNN models. However, the input size of tree crown samples was rarely discussed
in previous studies. For example, Hartling et al. [33] did not mention the input size of tree
sample images for DenseNet-40. For the work of Yan et al. [50], they used an input size of
15 × 15 pixels for all CNN models but did not explain why they choose this size.

5.2. Impact of Input Size of Samples

According to the statistics of all sample images, the maximum length was 47 and the
minimum length was 4, whereas the average length was 17. Specifically, the average length
of the sample images of maple, locust, pine, and spruce are 24, 16, 15, and 11, respectively.
The histograms of the size distribution of the tree crown samples were shown in Figure 11.
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The sizes of maple tree sample images range from 6 × 6 to 44 × 43 and that of locust
sample images vary from 6 × 6 to 47 × 46. The sizes of pine sample images range from
7 × 9 to 28 × 25 and that of spruce sample images vary from 4 × 4 to 17 × 18. A relative
small size of the sample images means limited features can be learned with CNN models.
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To evaluate the impact of the size of input sample images on classification accuracies,
ResNet-18 and DenseNet-40 were employed to train and classify sample images with
different sizes. Different sizes, including 16 × 16, 24 × 24, 32 × 32, 40 × 40, 48 × 48, and
64 × 64, were considered in the experiment. Both the training and testing sample images
were resized the same size. ResNet-18 and DenseNet-40 were then trained with each of the
resized training samples and tested using the responding testing sample images.

The results of this experiment are presented in Figure 12. It can be seen that the
accuracies of ITS classification obtained using ResNet-18 varied with the size of input
sample images. In contrast, the OA and kappa values of DenseNet-40 didn’t vary so much
as those of ResNet-18. For ResNet-18, the highest OA and kappa values were yielded by the
samples with a size of 40 × 40, followed by the sizes 32 × 32 and 48 × 48. The three sizes
were close to the maximum (which is 47) of all sample images. The lowest OA values were
provided by the sample dataset with sizes of 24 × 24 and 64 × 64. For maple and locust,
the highest AA were obtained by the sizes 40 × 40 and 48 × 48. For pine and spruce, the
highest AA were provided by the sizes 32 × 32 and 40 × 40. Consequently, it is suggested
that the input size of ResNet-18 needs to be determined according to the maximum size
of all the tree crown sample images. For DenseNet-40, the highest OA and kappa values
were yielded by the samples with a size of 24 × 24, followed by the sizes 16 × 16 and 32 ×
32. For spruce, the sizes of 16 × 16 and 24 × 24 yielded higher AA values than those of
the other sizes. This may be due to the average length of 11 pixels the pine sample images,



Forests 2021, 12, 1697 18 of 22

which is relative small than the other three tree species. However, the OA and the AA
values of the other three tree species were very close among different input sizes.
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5.3. Effect of Atmospheric Correction on Classification Accuracy

Atmospheric correction is commonly applied to satellite images to reduce the impact
of the atmosphere on image quality. To evaluate the impact of atmospheric correction, a
pansharpened image without atmospheric correction was used with the LiDAR nDSM and
intensity image to produce another sample dataset. The training and testing samples in this
new dataset correspond to the same samples in the first sample dataset generated using
pansharpened images produced after atmospheric correction. Then, ResNet-18 and SVM were
used to train and classify the training and testing sample images of the new sample dataset,
respectively. The experimental results were then compared with those of the sample images
generated using pansharpened images produced after atmospheric correction.

The accuracies of ResNet-18 and SVM are shown in Table 8. It can be seen that ResNet-
18 yielded an OA of 89.8% for the sample dataset without atmospheric correction. The
OA was degraded by 1.1%, compared with the OA of 90.9% for the sample dataset with
atmospheric correction. The OA of SVM yielded a degrade of 0.2%, which is negligible
when the classification was conducted on the sample dataset without atmospheric cor-
rection. Consequently, it can be concluded that it is unnecessary to perform atmospheric
correction when ITS classification was conducted using both pansharpened satellite images
and LiDAR data. This is consistent with previous studies [15,46].

Table 8. Classification accuracies of the testing dataset from stacked images with and without
atmospheric correction.

Model Class
AA (%)

Pansharpened_MS Pansharpened_MS_AR 1

ResNet-18

Maple 90.8 92.1
Locust 84.9 84.1
Pine 94.7 95.7

Spruce 85.7 90.7
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Table 8. Cont.

Model Class
AA (%)

Pansharpened_MS Pansharpened_MS_AR 1

OA(%) 89.8 90.9
Kappa 0.856 0.871

SVM

Maple 90.6 90.4
Locust 80.8 81.4
Pine 93.5 93.6

Spruce 90.8 90.9
OA(%) 88.9 89.1
Kappa 0.845 0.848

1 Pansharpened_MS_AR denotes pansharpened MS image with atmospheric correction.

6. Conclusions

This study explored the potential of four CNN models (ResNet-18, ResNet-34, ResNet-
50, and DenseNet-40) for ITS classification using WV-2 imagery and airborne LiDAR
data. The performances of the four CNN models were evaluated using different band
combinations derived from the PAN band, eight pansharpened MS bands, the nDSM, and
the intensity image. The accuracies of the four CNN models were also compared with those
of two traditional machine learning methods (i.e., SVM and RF) using different feature
combinations, which include spectral, vegetation indices, texture characteristics height
metric. The determination of the input size of CNN models was firstly discussed in this
work. As a result, we got the following conclusions.

First, the inclusion of the LiDAR DSM and intensity image was useful in improving
ITS classification accuracy for both the CNN models and traditional machine learning
methods. The classification accuracy of ResNet-18, ResNet-34, ResNet-50, DenseNet-40,
RF, and SVM can be improved if the LiDAR intensity image is included. The inclusion
of LiDAR intensity map was very important for improving the classification accuracy of
spruce class.

Second, the accuracies of ResNet-18 and ResNet-34 were significantly higher than
those of RF and SVM when only WV-2 images were used. ResNet-34 offered an OA of
87.1%, which was increased by 6.6% and 3.3%, respectively, compared with those of RF
and SVM. ResNet-18 offered an OA of 90.9%, which is the highest, when both WV-2 and
airborne LiDAR data were used. Compared with RF and SVM, the OA of ResNet-18 was
increased by 4.0% and 1.8%, respectively. This result indicates that ResNet-18 outperformed
traditional machine learning classification methods for ITS classification.

Furthermore, experimental results showed that the size of input samples has impact
on the classification accuracy of ResNet-18. In contrast, the OA and kappa values of
DenseNet-40 didn’t vary so much with the input sizes as those of ResNet-18. Therefore,
it is suggested that the input size of ResNet models can be determined according to the
maximum size of all tree crown sample images. Atmospheric correction is unnecessary
when ITS classification was conducted using both pansharpened satellite images and
airborne LiDAR data.

The use of satellite images with a higher spatial resolution, which can provide sample
images with larger input size, would be beneficial for ITS classification, especially for
the species with relatively small crown sizes, such as pine and spruce. For example,
WorldView-3/4 can be used in further work. Additionally, more training samples could be
collected to improve further and validate the networks.
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