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ABSTRACT: 
 
Bulk density and soil carbon models were fitted for soil samples collected during field campaigns in 2018 and 2019 for the 
Kapuskasing region of the District of Cochrane in Ontario, Canada.  Prediction maps for bulk density and soil carbon were 
generated for the 0-15 cm depth mineral soil layer.  The application of multi-source remotely sensed data as environmental 
covariates for model predictors was implemented.  Environmental covariates were obtained from multispectral satellite imagery, 
LiDAR (light detection and ranging) retrievals and airborne geomagnetic surveys, as well from a digital elevation model (DEM) 
for topographic covariates.  Two covariates derived from LiDAR, canopy height model (CHM) and gap fraction, were of high 
variable importance when fitting models for average bulk density; gap fraction had the highest to second highest variable 
importance for average bulk density when considered among a full set of 76, or reduced sets of 12 or 5 separate predictors 
respectively.  Environmental covariates corresponding to vegetation cover, specifically reflectance from multispectral imagery or 
LiDAR data, had the highest variable importance when compared with other categories of soil formation factors.  Random forest 
(RF) models were generated, with RF models based upon just 12 predictors obtaining reasonable results with coefficients of 
determinations (R2) greater than 0.7 for the standard derivation of bulk density, standard deviation of total carbon and average 
total carbon for the 0-15 cm depth layer. 
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1. INTRODUCTION 

Soil bulk density and carbon measurements are of relevance 
for many agricultural and environmental applications.  Bulk 
densities can be correlated to soil textural and nutrient 
properties, and affect crop growth and yields by the 
constriction of root extensions through soil (Reynolds et al., 
2002).  Soil carbon is of prime significance for various 
environmental studies in regards to its role with the global 
carbon cycle (Grimm et al., 2008).  Diverse biotopes within a 
region such as a forest could reveal differing concentrations of 
soil carbon and bulk density; the generation of prediction 
maps of such properties are of interest.  The estimation of 
carbon stocks, as well as the evaluation of land settings 
suitable for agriculture, were motivations for this research. 
 
Digital soil mapping (DSM) is the process of deriving 
prediction maps from models fitted for soil target variables 
using environmental covariates as model predictors.  A model 
created for a target variable collected at a site level can 
generalize a prediction map of that target variable for the 
respective study area.  The expense, effort and time 
considerations for obtaining soil samples from potentially 
remote or inaccessible locations can make the traditional 
means of collecting vast amounts of soil samples per 
surveying grid prohibitive.  The variability of various soil 
properties over comparatively small spatial scales within 
certain environments, such as a forest consisting of different 
topographies and vegetation species, could render inaccurate 

results with conventional prediction maps based on kriging 
methodologies.  On the contrary, DSM allows the 
extrapolation of soil properties for an area by recognizing 
environmental covariates as soil formation factors (Mulder et 
al., 2011) that over long time scales can affect the observed 
soil properties.   
 
Recent methodologies for DSM incorporate a SCORPAN 
approach (McBratney et al., 2003) that relates model 
predictors to environmental covariates conforming to 
categories of soil formation factors.  The environmental 
covariates correspond to soil, climate, organism (vegetation), 
relief (topography) and parent material categorical factors.  
Environmental covariates can be derived from various means 
such as a digital elevation model (DEM), geospatial vector 
files, multispectral satellite imagery, synthetic aperture radar 
(SAR) imagery, or light detection and ranging (LiDAR) data 
(Mulder et al., 2011).  Topographic covariates such as slope, 
curvature and aspect can be computed from a DEM.  Climatic 
and vegetative covariates are often acquired as products 
obtained from multispectral satellite imagery.   The indices 
such as Normalized Difference Vegetation Index (NDVI) and 
Normalized Difference Water Index (NDWI), calculated from 
multispectral imagery, are commonly applied as vegetative 
covariates (Poggio et al., 2013; Yang et al., 2016).  Parent 
material can comprise of underlying bedrock geology.  Other 
soil properties, typically collected at a site level, or else from 
covariates that can be easily observed, can be utilized as 
predictors relating to soil features. 
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Machine-learning approaches are prevalent for DSM, due to 
their versatility of being able to be applied to data with 
predictors of different levels of measurement where linear or 
explicit model formulations are not possible.  Random forest 
(RF) methods are popular for DSM applications (Brungard et 
al., 2015; Ließ et al., 2012; Nussbaum et al., 2018; Yang et al., 
2016) and tend to have improved accuracy when compared 
with other approaches such as decision trees or ordinary 
regression techniques.  RF can be applied to either categorical 
or continuous target variables, resulting in either classification 
or regression analysis, respectively. 
 
The improvement of modeling accuracies for DSM is an active 
area of research.  Coefficient of determination (R2) values for 
models in recent studies vary from 0.02 to 0.27 and 0.07 to 
0.35 for validation and calibration datasets respectively for 
soil organic carbon in France (Mulder et al., 2016), to 0.45 for 
organic carbon in the A horizon for a study region in the 
Argentine Pampas (Angelini et al., 2016).  Additional studies 
reported R2 values from between 0.20 to 0.55 for soil textural 
components in Denmark (Adhikari et al., 2013), to between 
0.11 to 0.36 for soil organic carbon for rangeland in eastern 
Australia (Wang et al., 2018).  Discovering environmental 
covariates that enhance model accuracy is of interest.  Many 
studies focus on topographic covariates primarily generated 
from a DEM (Adhikari et al., 2013; Brungard et al., 2015; 
Mulder et al., 2016) as being the most important for DSM.  
However, for homogeneous study areas of relatively flat 
terrain, topographic covariates may fail to have significance.  
Supplementary categories of covariates might be of more 
relevance, in particular covariates that relate to vegetation 
cover.  Multi-source remotely sensed data can provide 
additional environmental covariates.  Landsat imagery 
obtained for different periods of the year can present 
information pertaining to vegetation cover.  LiDAR data 
attained from airborne campaigns can provide information at 
finer spatial resolutions that can be utilized to derive 
topographic and vegetative covariates.  Such vegetative 
covariates include canopy height model (CHM) and gap 
fraction.  To our understanding, CHM and gap fraction for an 
entire study area have not been applied as predictors in prior 
DSM research.  LiDAR data were available for our study area 
for the soil sampling locations, and hence were utilized for 
model input. 
 
The objective of this research was the identification of 
predictors, particularly of a non-topographic type, with higher 
variable importance for a relatively flat and homogenous land 
setting.  We implemented multi-source remotely sensed data 
for predictors, with the  goal of maximizing model accuracy.  
Prediction maps of soil bulk density and carbon were 
generated to distinguish areas or patterns between land 
features and corresponding soil properties. 
 
 

2. STUDY AREA AND SOIL DATA 

Soil samples were collected in the vicinity of the community 
of Kapuskasing in the District of Cochrane in Ontario (ON), 
Canada.  For comparison purposes, additional soil samples for 
3 sites were collected near Hearst, ON about 100 km to the 
west of Kapuskasing.  The Kapuskasing study area consists of 
approximately 550 km2 and is bounded from the latitudes of 
49.35° N to 49.55° N and the longitudes of 82.25° W to 82.75° 
W, fitting within the boundaries for which airborne LiDAR 
retrievals are available.  This region is relatively flat; from the 

DEM the minimum and maximum elevations are 200 m and 
269 m, respectively.  The locations for the soil sampling 
locations for the study area are shown in Figure 1.  This region 
is colloquially referred to as the Great Clay Belt (GCB), due 
to the presence of heavy clay in the lower soil horizons 
throughout the region, typically encountered at depths below 
20 cm.  This is a mostly forested region within the boreal 
forest biome, with black spruce (Picea mariana), white spruce 
(Picea glauca), balsam fir (Abies balsamea) and trembling 
aspen (Populus tremuloides) as dominant tree species.  
Agricultural land exists south and west of Kapuskasing. 
 
Soil samples were collected during two field campaigns, in 
September 2018 and August 2019.  A total of 34 sites, each 
consisting of 3 subplots with soil samples from various depths 
(0-5 cm, 5-15 cm, 15-30 cm, 30-45 cm, 90-105 cm) were 
obtained.  This corresponded to 102 soil samples per profile 
depth layer for this analysis.  The 3 subplots per site 
corresponded to 0°, 120° and 240° bearings at distances of 4.5 
m, 7.5 m and 9.5 m from the site center respectively, with the 
soil samples obtained within a 2 m radius of each subplot 
bearing location.  Bulk density samples were obtained for each 
of the top 30 cm depth layers, and soil chemistry samples were 
obtained for all depth layers.  Sites from a variety of local land 
cover types were sampled, ranging from peat bogs, old growth 
forest to pasture and summer fallow agricultural fields, in 
order to attain maximum variation.  The sites that were 
sampled within a km of one another corresponded to different 
land cover types. 
 

 
 

Figure 1. The study area for the soil sampling locations near 
Kapuskasing, ON. 

 
Bulk density samples were processed to obtain the mass of 
mineral soil per reference volume, minus the total mass of 
rocks and coarse fragments present in the bulk density 
samples. The bulk density samples were dried for a minimum 
of 3 months, then each sample was baked in a tin at 110° C for 
a minimum of 48 hours.  The masses of the baked soil samples 
were obtained separately when each sample was taken directly 
out of the soil oven, and then after each sample was 
subsequently pulverized with a mortar and then sieved through 
a 2 mm mesh to leave out the rocks and coarse fragments.  
Chemistry sample analysis consisted of total carbon and total 
nitrogen contents, exchangeable phosphorus and exchangeable 
potassium, acidity test and soil texture components.  
Combustion methods were utilized to obtain the total carbon 
and total nitrogen contents, obtained as a percentage of mass 
for each soil sample.  The bulk density samples required less 
complex procedures for processing, and subsequently were 
processed before the chemistry samples.  This led to an 
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interest in analyzing bulk densities, as these results were more 
readily available. 
 
The greatest variability in soil properties occurred in the top 
30 cm, as heavy clay was ubiquitous for the greater depths.  
Of interest was to determine soil carbon contents for the 
mineral soil depths where carbon contents were maximum, 
which for this study corresponded to the 0-5 cm and 5-15 cm 
profile depths.  Other studies have focused on surface mineral 
soil layers for soil carbon contents (Gomez et al., 2008; 
Grimm et al., 2008).  Correspondingly, bulk densities had the 
most variation in the surface layers, so the shallowest depth 
layers were also pertinent for the bulk density analysis.  
Subsequently, it was decided to focus on the 0-15 cm profile 
depth for the DSM modelling.  The quantities for the 0-15 cm 
depth layer were obtained as the weighted averages of the 0-5 
cm and 5-15 cm layers. 
 
Averages and standard deviations were calculated for the bulk 
densities and total carbon (here also referred to as carbon), 
respectively, as the average and standard deviation of the 3 
subplot values per site for the corresponding layer.  The 
standard deviation calculations takes into account the variation 
among the different subplots within a site, as subplots could 
lie underneath different vegetation within the same site 
location, and subsequently have different soil properties.     
 
 

3. METHODOLOGY 

The environmental covariates were obtained from 
multispectral satellite imagery, a DEM, aeromagnetic surveys 
and LiDAR data.  Distances and densities to water bodies 
were derived from L-band SAR imagery, and a geospatial 
vector file was utilized for underlying bedrock geology.  A 
total of 76 separate environmental covariates were considered 
for the full set of predictors, which was applied for both the 
bulk density and total carbon models.  From the full set, 
reduced sets (i.e. 12 or 5 predictors with higher variable 
importance) were selected, which are shown in Table 1.  Note 
for these reduced lists of predictors that the surface reflectance 
correspond to bands from Landsat-8. 
 
Environmental covariates for vegetation cover were derived 
from Landsat multispectral imagery obtained from Google 
Earth.  The Landsat imagery was provided by the United 
States Geological Survey (USGS); Landsat-8 imagery was 
utilized for imagery corresponding to 2012 and after (i.e. 
2017), and Landsat-5 imagery was utilized for previous years 
(i.e. 1984, 1995 and 2005).  In total, 57 predictors derived 
from Landsat imagery were utilized in the full predictor set.  
Median surface reflectance values were calculated for 
corresponding bands for cloud-free (i.e. less than 1% cloud 
cover) scenes obtained for 4 periods of the years.  These 
periods consisted of winter (January to March) for dormancy, 
spring (May), summer (June and July) for peak-vegetation, 
and autumn (September 10th to October 10th).  NDVI and 
NDWI for the different periods were also derived.  A 
Provincial DEM for 2016 created by the Ontario Ministry of 
Natural Resources & Forestry (MNRF) obtained via Land 
Information Ontario (LIO) was utilized to generate covariates 
for slope and curvature at various resolutions (30 m, 150 m, 
300 m, 900 m) to account for the contour of the local 
topography.  Aspect and hillshade covariates were also created 
from the DEM.  The Landsat imagery and DEM were attained 
at 30 m spatial resolutions.  Aeromagnetic data was obtained 

from the Canadian Aeromagnetic Data Base created by 
Natural Resources Canada (NRCan). Gravity anomaly and 
magnetic residual of total field from airborne surveys, current 
as of 2016 and November 2018 respectively, were utilized as 
covariates for bedrock material.  The vertical derivatives for 
gravity anomaly and magnetic residual of total field were also 
applied as predictors.  Bedrock geology vector files supplied 
from NRCan were also utilized as covariates for parent 
material. 

 

 
 

Table 1. Reduced sets of predictors utilized for the RF models. 
 
The Ontario MNRF collected LiDAR data, which was 
obtained via LIO for the District of Cochrane in northern 
Ontario.  LiDAR-derived covariates included CHM, computed 
as the difference between the recorded maximum and 
minimum elevations of LiDAR retrievals per pixelized cell.  
Correspondingly, gap fraction was calculated as the fraction of 
LiDAR retrievals with only one return, to the total number of 
retrievals per pixelized cell.  The LiDAR data were obtained 
by an airplane survey during the autumn of 2016, collected 
with an average density of 8 points per m2.  CHM and gap 
fraction were initially calculated for spatial resolutions of 10 
m, and then were subsequently resampled to the common cell 
size of 30 m utilized for covariate layer integration purposes. 
 
RF models were fitted separately for the average bulk density 
and standard deviation bulk density, first upon a set of 76 
covariates and then separately upon 12 covariates with higher 
variable importance.  Reasonable RF models with just 5 
covariates were obtained for the average bulk density and 
average carbon, individually.  The variable importance was 
determined from the random forest models, with the percent 

STDDEV BD
(12 Predictors) (5 Predictors) (12 Predictors)

Slope CHM Slope 150m
Curvature 150m Gap Fraction Curvature 150m
CHM B2 Winter 2017 CHM
Gap Fraction B3 Winter 2017 Gap Fraction
B2 Winter 2017 NDWI Winter 2017 B1 May *
B2 May * B3 Winter 2017
B3 Winter 2017 B4 Summer 2017
B3 Summer 2017 B6 Autumn *
B4 Winter 2017 NDVI May *
NDVI May * NDVI Summer 2017
NDWI Winter 2017 NDWI May *
NDWI May * NDWI Summer 2017

STDDEV C
(12 Predictors) (5 Predictors) (12 Predictors)

Aspect Aspect Slope
Curvature 150m B1 May * CHM
CHM B2 Winter 2017 B1 Winter 2017
B1 Winter 2017 B3 Winter 2017 B1 May *
B1 May * NDWI Winter 2017 B2 Winter 2017
B2 Winter 2017 B2 May *
B2 May * B3 Winter 2017
B3 Winter 2017 B3 Summer 2017
B11 Summer 2017 B6 Autumn *
NDVI Winter 2017 B7 Winter 2017
NDVI May * NDVI Winter 2017
NDWI Winter 2017 NDVI May *

* Median surface reflectance for same period over 5 years (2015-2019)

AVG BD

AVG C
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inclusion of mean squared error as the metric.  Due to the 
limited amount of soil sampling sites available, the full set of 
sites were utilized for model training.  Default settings of 500 
trees were applied for the RF fittings reported; comparable 
values were obtained when 1000 trees were specified.  The 
caret package in R (Kuhn, 2008) was utilized for the 
modeling.  Five-fold cross validation, with 3 repeats was 
utilized for fitting the RF models.  Metrics for model 
assessment were the coefficient of determination (R2) and the 
mean absolute error (MAE). 
 
 

4. RESULTS AND ANALYSIS 

The accuracies for the models are summarized in Table 2.  
These R2 and MAE values are based upon model training.  
Maximum R2 values ranged from just below 0.3 for average 
bulk density, to greater than 0.7 for average carbon.  The R2 
values were even higher for the standard deviation of those 
properties, exceeding 0.8 for both bulk density and carbon.  
These accuracies in terms of the coefficient of determination 
are comparable or exceed accuracies for DSM models reported 
in recent literature (Nussbaum et al., 2018), even for 
evaluations based upon model calibration (Mulder et al., 
2016).  Note that due to the low number of soil sampling sites 
in this study, that data was not retained explicitly for model 
validation, so data for all soil sampling sites were applied for 
model training.   

 

 
 

Table 2. Accuracies for RF models for each target variable 
(AVG BD, STDDEV BD, AVG C and STDDEV C) for the 0-

15 cm depth layer. 
 
Variable importance plots for the RF models for the average 
bulk density and average carbon contents were generated.  
These plots first considered the full set (i.e. 76) predictors, 
and then reduced sets for the most accurate model obtained for 
each based upon R2 values from Table 2.  Variable importance 
plots for average bulk density are shown in Figure 2, and for 
average carbon are shown in Figure 3.  For average bulk 
density, on the reduced set of predictors, gap fraction had the 
highest variable importance with 9.67 % Inc MSE.  On the full 
set of predictors, gap fraction was the second and CHM the 
fifteenth most important predictors, respectively.  Covariates 
derived from LiDAR data improved the model accuracies.  For 
the average carbon models, predictors from multispectral 
imagery corresponding to ultraviolet and blue wavelengths of 

reflectance during the winter and May had the higher variable 
importance.  The topographic covariate of aspect had a higher 
variable importance than that of other topographic covariates.  
One can verify that environmental covariates relating to 
vegetation, in this case multi-sourced remotely sensed data 
from LiDAR and Landsat imagery, had the highest variable 
importance. 
 

  
Figure 2. Variable importance of the predictors for the RF 

models for AVG BD for the 0-15 cm depth layer. 
 

  
Figure 3. Variable importance of the predictors for the RF 

models for AVG C for the 0-15 cm depth layer. 
 
Utilizing a full set of 76 predictors could be deemed too large 
given the sample size, so RF models were trained on smaller 
predictor sets.  The prediction versus observation plots for the 
RF models trained on the corresponding reduced set of 12 
predictors for each target variable for all 34 sites, are shown in 
Figure 4.  The gray line denotes a perfect prediction, i.e. 
prediction is equal to observation value.  Reasonable models 
in terms of R2 were able to be fitted for the standard deviation 
values and the average total carbon, but the fit for average 
bulk density was not as robust.  Prediction maps of the bulk 
density and average total carbon quantities for the RF models 
generated from the corresponding reduced sets of 12 
predictors are shown in Figure 5. 

R2 MAE
[g/cm3]

Average Bulk Density 76 Predictors 0.28 0.19
(AVG BD) 12 Predictors 0.28 0.19

5 Predictors 0.29 0.18
Bulk Density Standard Deviation 76 Predictors 0.92 0.04
(STDDEV BD) 12 Predictors 0.84 0.04

R2 MAE
[%]

Average Carbon 76 Predictors 0.88 2.59
(AVG C) 12 Predictors 0.73 2.57

5 Predictors 0.67 2.65
Carbon Standard Deviation 76 Predictors 0.95 1.24
(STDDEV C) 12 Predictors 0.90 1.03

Model Bulk Density

Model Carbon

3.40

2.76

2.60

1.96

1.90

1.72

1.71

1.62

1.52

1.37

1.31

1.29

1.24

1.17

1.08

B3 Winter 2017

Gap Fraction

B2 Winter 2017

B4 Winter 2017

NDWI Winter 2017

NDWI May

B5 Winter 2017

B1 Summer 1984

NDVI Winter 2017

B4 Fall

NDVI May

B6 May

B3 Summer 2005

B3 Summer 1995

CHM

% Inc MSE

Full Set of Predictors

9.67

8.19

8.13

5.07

2.94

Gap Fraction

NDWI Winter 2017

B3 Winter 2017

CHM

B2 Winter 2017

% Inc MSE

Reduced Set of Predictors

2.91

2.78

2.46

2.23

2.22

2.19

2.17

2.07

2.02

1.97

1.97

1.95

1.92

1.88

1.86

B1 May

B3 Winter 2017

NDWI Winter 2017

B4 Winter 2017

B7 Winter 2017

NDVI Summer 1995

B6 Winter 2017

B1 Summer 1984

Aspect

B11 Summer 2017

B5 Summer 1995

B1 Winter 2017

Slope 300m

NDVI May

B5 Summer 2005

% Inc MSE

Full Set of Predictors

5.43

4.72

2.79

2.72

2.68

2.48

1.84

1.80

1.60

1.57

1.52

0.37

NDVI Winter 2017

B1 May

B2 Winter 2017

B1 Winter 2017

NDWI Winter 2017

Aspect

B2 May

CHM

B3 Winter 2017

NDVI May

B11 Summer 2017

Curvature 150m

% Inc MSE

Reduced Set of Predictors
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Figure 4. Accuracy plots for AVG BD, AVG C, STDDEV BD and STDDEV C for the 0-15 cm depth layer for the respective RF 

models corresponding to 12 predictors (see Table 2). 

 

  
Figure 5. Prediction maps for AVG BD, AVG C , STDDEV BD and STDDEV C for the 0-15 cm depth layer for the respective RF 

models corresponding to 12 predictors. 
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From the prediction maps in Figure 5, one can notice certain 
patterns.  Regions of higher average bulk densities correspond 
to agricultural land, whereas regions of lower average bulk 
densities correspond to forested areas.  In particular, average 
bulk density has a minimum value to the northeast of the 
community of Kapuskasing, which corresponds to peatland.  
The standard deviation bulk density is lowest among the 
agricultural fields and the cleared land along roadways, but 
highest among the forested regions.  Patterns for average 
carbon content are less obvious, but one can ascertain that 
average carbon is maximum in bog environments where 
average bulk density is minimum, as seen between the 
prediction maps for AVG BD and AVG C.  Inversely to the 
standard deviation bulk density, the standard deviation of 
carbon is highest among the cleared regions, with the 
exception of the agricultural land where the standard deviation 
values are minimum. 
 
A true-color composite of the study area is shown in Figure 6.  
This image was generated from Landsat-8 imagery obtained as 
median surface reflectance values for cloud-free days for June 
and July 2017.  The bands B2 (0.452-0.512 µm), B3 (0.533-
0.590 µm) and B4 (0.636-0.673 µm) were taken for blue, 
green and red, respectively.  The roadways and cleared areas 
from this image are apparent.  Regions with the brightest 
reflectance values correspond to the community of 
Kapuskasing and cropland fields.  The area with the highest 
average carbon contents in Figure 5 correspond to wetland 
areas in Figure 6. 
 

 
Figure 6. True-color composite image of the study area from 

Landsat-8 imagery from the summer of 2017. 
 
Prediction maps for the RF models corresponding to 5 
predictors each for average bulk density and average carbon 
are shown in Figure 7.  The model for average bulk density 
with 5 predictors was the most accurate model for that target 
variable achieved; the model for average carbon content was 
still comparable in evaluation metrics to the model with 12 
predictors.  Although the R2 values for the average bulk 
density models were not high, the AVG BD model with just 5 
predictors had comparable accuracy and similar prediction 
maps as models built with more predictors.  In general, it is 
expected that as more predictors are applied in a model that R2 
will increase, so it likely for R2 to decrease as fewer numbers 
of predictors from the same set are applied for modeling.  That 
R2 values did not decrease as fewer predictors were used for 
modelling AVG BD, supports that the AVG BD model with 
just 5 predictors was the best model for average bulk density.  
 
The agriculture regions can be clearly discerned in the average 
bulk density prediction map, as those areas have soil bulk 

densities that are more compacted.  Areas corresponding to 
different dominant tree species, and secondary versus original 
forest can be differentiated from the contrasting intensities 
from both the AVG BD and AVG C prediction maps. 
 

 

 
Figure 7. Prediction maps for AVG BD and AVG C for the 0-
15 cm depth layer, from the respective RF models built upon 

just 5 predictors. 
 
Determining the total soil carbon was a main objective for this 
project.  However, assessing the concentrations of other 
nutrients such as total nitrogen and exchangeable phosphorus 
and exchangeable potassium are also of relevance.  
Correlations   between average bulk density, average carbon, 
average nitrogen, average exchangeable phosphorus and 
average exchangeable potassium for those sites were 
calculated, as shown in Figure 8.  For these 34 sites, average 
bulk density was moderately negatively correlated to average 
carbon, as well as weakly negatively correlated to average 
nitrogen.  Average carbon was very strongly correlated to 
average nitrogen concentrations.  The negative correlation 
between average bulk density and average carbon indicates 
that overall as average bulk density decreases then the average 
carbon content of the soil increases. 
 
The strong correlation between average carbon and average 
nitrogen indicates that a model fit could be regressed between 
these quantities.  Correlations of average bulk density or 
average carbon between other quantities such as exchangeable 
phosphorus or exchangeable potassium are less compelling.  
There exists a moderate correlation between average bulk 
density and average potassium, which indicates that soils with 
heavier bulk densities tend to have higher exchangeable 
potassium contents.  Correspondingly, average carbon is 
negatively correlated to average exchangeable potassium,  but 
with a weaker correlation than what average bulk density has 
with average exchangeable potassium.  It is plausible that 
correlations between the various soil nutrients properties can 
be expected, as the long-term result of ecological processes 
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would lead to the differentiation between nutrient-rich and 
nutrient-poor soils.  Soil samples obtained below the depths of 
the tree roots for this region were consistently devoid of 
nutrients, which signifies vegetation as a soil formation driver 
that alters soil nutrient properties for this region.  As the scale 
of the DEM and Landsat imagery utilized was 30 m, and 
sampling sites within a few hundred meters of one another 
with dissimilar soil properties were able to be discerned from 
the modelling, it is likely that concerns pertaining to the issue 
of scale for the processes controlling soil formation are not 
merited (McKenzie and Ryan, 1999).   
 

 
Figure 8. Correlations between AVG BD [g/cm3], average 

carbon (AVG C) [%], average nitrogen (AVG N) [%], average 
exchangeable phosphorus (AVG P) [ppm] and average 

exchangeable potassium (AVG K) [ppm] for the 0-15 cm 
depth layer. 

 
 

5. DISCUSSION 

The prediction maps for the RF models in Figures 5 & 7 
display many uniformities when inspected for the same target 
variable.  In particular, for the average bulk densities, cleared 
regions utilized for agriculture have the densest surface soil 
densities, which is consistent with observations of soil 
compaction existent in the area.  Regions of the forest, 
specifically of black spruce [Picea mariana] have the lightest 
soil densities, and likewise highest carbon contents, which 
correspond to peat and lighter materials in surface soil layers.  
Environmental covariates corresponding to vegetation, 
specifically reflectance from multispectral imagery or LiDAR-
derived covariates such as CHM and gap fraction, had the 
highest variable importance for all the bulk density and total 
carbon soil models.  This indicates that vegetation cover type 
has a significant influence as a soil formation factor for this 
study region.  The corresponding prediction maps can be 
utilized for environmental studies for studying soil carbon, or 
utilized for decision-making purposes for determining areas 
suitable for agriculture.  
 
The 0-15 cm layer was chosen as the profile depth for analysis 
as many studies focus on either the 0-10 cm or 5-15 cm depths 
for total carbon analysis.  For this dataset, the 0-5 cm and 5-15 

cm depth profiles had similar results, with greater variation in 
the 0-5 cm layer.  Clayey soil was encountered for depths 
greater than 20 cm, which had higher bulk densities but also 
lower total carbon and total nitrogen contents.  The 0-15 cm 
depth layer was deemed the profile layer of interest as this 
layer was most interactive with the vegetation, which also had 
the most variation in soil properties.  An analysis on a layer 
profile greater than 5 cm was desired, hence why the 0-5 cm 
depth profile just by itself was not considered separately. 
 
Investigating relationships with other soil nutrient properties 
as target variables for RF models and generating prediction 
maps will be a future focus for this study area.  Bulk densities 
can be processed before soil chemistry results in non-
specialized laboratories or workspaces at a cheaper cost.  This 
means that if strong correlations exist between bulk densities 
and soil nutrient properties, then models built on bulk density 
could be utilized to estimate certain soil properties. 
  
It is anticipated that more soil samples will be obtained during 
a future field campaign, for another study area within the GCB 
as well as additional sites in this study area for the 
Kapuskasing region.  Additional samples will improve the 
threshold of sites for further model accuracy, to allow the 
separation of sites for model training and model verification 
purposes.  Accuracy statistics for model assessment can then 
be calculated when a model fitted on the training data is 
applied to the verification data, in order to obtain more robust 
evaluation measures. 
 
 

6. CONCLUSIONS 

A comprehensive approach of applying environmental 
covariates generated from a variety of remotely sensed data 
improved the accuracy of models for DSM purposes.  Multi-
source remotely sensed data was able to generate a variety of 
non-topographic covariates that permitted DSM of bulk 
density and soil carbon properties for a relatively flat 
homogeneous area.  RF models with reasonable accuracies 
were able to be generated, and the best models for standard 
deviation of bulk density, average total carbon and standard 
deviation of total carbon had coefficients of determination 
greater than 0.7 which are comparable or exceed accuracies 
reported for recent DSM models (Nussbaum et al., 2018).  
 
Covariates obtained from remotely-sensed data, in particular 
LiDAR, have been advantageous for improving model 
accuracy.  CHM is a compelling environmental covariate for 
vegetation cover, and gap fraction performs well as a covariate 
for the density of the vegetation canopy.  For the average bulk 
density models, gap fraction had the highest or second highest 
variable importance, with CHM among the top predictors.  
Environmental covariates obtained from multispectral satellite 
imagery also had higher variable importance, whereas 
topographic covariates derived from a DEM had lower 
ranking.  Specifically, vegetative covariates, whether 
determined from multispectral imagery or LiDAR data, had 
the highest variable importance.  Vegetative covariates had the 
highest variable importance for the average total carbon 
models as well.  This provides evidence that vegetative 
covariates, when compared to either climatic, topographic or 
parent material covariates, drive the soil formation factors for 
the study region more so than do other categories of 
environmental covariates. 
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